Nous prouvons que pour une variété de dimension 3 de type général et de grand volume le second plurigenre est positif et la cinquième application canonique est birationnelle
In this paper we will prove that for a threefold of general type and large volume the second plurigenera is positive and the fifth canonical map is birational.
@article{AIF_2007__57_4_1315_0, author = {Todorov, Gueorgui Tomov}, title = {Pluricanonical maps for threefolds of~general type}, journal = {Annales de l'Institut Fourier}, volume = {57}, year = {2007}, pages = {1315-1330}, doi = {10.5802/aif.2295}, zbl = {1122.14031}, mrnumber = {2339333}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2007__57_4_1315_0} }
Todorov, Gueorgui Tomov. Pluricanonical maps for threefolds of general type. Annales de l'Institut Fourier, Tome 57 (2007) pp. 1315-1330. doi : 10.5802/aif.2295. http://gdmltest.u-ga.fr/item/AIF_2007__57_4_1315_0/
[1] The 5-canonical system on 3-folds of general type (math.AG/0512617)
[2] The locus of log canonical singularities (arXiv:mathAG/9806067)
[3] Sur les applications pluricanoniques des variété de type très général en dimension 3, Amer J. Math, Tome 108 (1986), pp. 433-449 | Article | MR 833363 | Zbl 0601.14035
[4] Canonical models of surfaces of general type, Inst. Hautes Études Sci. Publ., Tome 42 (1973), pp. 171-219 | Article | Numdam | MR 318163 | Zbl 0259.14005
[5] Boundedness of pluricanonical maps of varieties of general type (arXiv:math.AG/0504327, to appear in Inv. Math) | Zbl 05064656
[6] On pluricanonical maps for threefolds of general type, J.Math. Soc. Japan, Tome 50 (1998), pp. 615-621 | Article | MR 1626342 | Zbl 0916.14020
[7] Linear series of irregular varieties, World Scientific Press, Japan (2002) | MR 2030451 | Zbl 1094.14502
[8] On the extension problem of pluricanonical forms, Contemp. Math, Tome 241 (199), pp. 193-207 | MR 1718145 | Zbl 0972.14005
[9] On Fujita’s freeness conjecture for 3-folds and 4-folds, Math. Ann., Tome 308 (1997), pp. 893-899 | Article | Zbl 0909.14001
[10] Boundedness of log terminal Fano pairs of bounded index (arXiv:math.AG/0205214 v1)
[11] Higher direct images of sheaves I, Ann. of Math, Tome 127 (1988), pp. 93-163
[12] Shafarevich maps and automorphic forms, Princeton University Press, Princeton, NJ, M. B. Porter Lectures (1995) | MR 1341589 | Zbl 0871.14015
[13] Birational geometry of algebraic varieties, Cambridge University Press, Cambridge, Cambridge Tracts in Mathematics, Tome 134 (1998) | MR 1658959 | Zbl 0926.14003
[14] Positivity in algebraic geometry. II, Springer-Verlag, Berlin (2004) | MR 2095472 | Zbl 1093.14500
[15] Quint-canonical systems on canonical threefolds of index 1, Comm. Algebra, Tome 28 (2000), pp. 5517-5530 | Article | MR 1808586 | Zbl 1083.14518
[16] Pluricanonical systems on algebraic varieties of general type (preprint, to appear in Inv. Math.) | Zbl 05057630
[17] Pluricanonical systems of projective varieties of general type (arXiv:math.AG/9909021)