Sur les variétés CR de dimension 3 et les twisteurs
Biquard, Olivier
Annales de l'Institut Fourier, Tome 57 (2007), p. 1161-1180 / Harvested from Numdam

Nous montrons qu’une variété CR strictement pseudoconvexe, de dimension 3, analytique réelle, est le bord à l’infini d’une unique métrique d’Einstein autoduale, définie dans un petit voisinage. La preuve s’appuie sur une construction nouvelle d’espaces de twisteurs à l’aide de courbes rationnelles singulières.

We prove that any real analytic strictly pseudoconvex CR 3-manifold is the boundary (at infinity) of a unique selfdual Einstein metric defined in a neighborhood. The proof uses a new construction of twistor space based on singular rational curves.

Publié le : 2007-01-01
DOI : https://doi.org/10.5802/aif.2290
Classification:  53C26,  53C28
Mots clés: twisteurs, métrique autoduale, variété CR
@article{AIF_2007__57_4_1161_0,
     author = {Biquard, Olivier},
     title = {Sur les vari\'et\'es CR de dimension 3 et~les~twisteurs},
     journal = {Annales de l'Institut Fourier},
     volume = {57},
     year = {2007},
     pages = {1161-1180},
     doi = {10.5802/aif.2290},
     zbl = {1124.53014},
     mrnumber = {2339324},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/AIF_2007__57_4_1161_0}
}
Biquard, Olivier. Sur les variétés CR de dimension 3 et les twisteurs. Annales de l'Institut Fourier, Tome 57 (2007) pp. 1161-1180. doi : 10.5802/aif.2290. http://gdmltest.u-ga.fr/item/AIF_2007__57_4_1161_0/

[1] Atiyah, M. F.; Hitchin, N. J.; Singer, I. M. Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A, Tome 362 (1998) no. 1711, pp. 425-461 | MR 506229 | Zbl 0389.53011

[2] Biquard, O. Métriques d’Einstein asymptotiquement symétriques, Astérisque, Tome 265 (2000), pp. vi+109 | Zbl 0967.53030

[3] Biquard, O. Métriques autoduales sur la boule, Invent. math., Tome 148 (2002) no. 3, pp. 545-607 | Article | MR 1908060 | Zbl 1040.53061

[4] Biquard, O. Autodual Einstein versus Kähler-Einstein, Geom. Funct. Anal., Tome 15 (2005) no. 3, pp. 598-633 | Article | MR 2221145 | Zbl 1082.53026

[5] Biquard, O.; Apostolov, V.; Dancer, A.; Hitchin, N.; Wang, M. Cauchy-Riemann 3-Manifolds and Einstein Fillings, Perspectives in Riemannian Geometry, American Mathematical Society (CRM Proceedings and Lecture Notes) Tome 40 (2006), pp. 27-46 | MR 2251002 | Zbl 1109.53047 | Zbl 05066641

[6] Calderbank, D. M. J.; Singer, M. A. Einstein metrics and complex singularities, Invent. Math., Tome 156 (2004) no. 2, pp. 405-443 | Article | MR 2052611 | Zbl 1061.53026

[7] Chern, S. S.; Moser, J. K. Real hypersurfaces in complex manifolds, Acta Math., Tome 133 (1974) no. 3, pp. 219-271 | Article | MR 425155 | Zbl 0302.32015

[8] Debarre, O. Higher-dimensional algebraic geometry, Springer-Verlag, New York, Universitext (1961) | MR 1841091 | Zbl 0978.14001

[9] Fefferman, C. L. Monge-Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains, Ann. of Math. (2), Tome 103 (1976) no. 2, pp. 395-416 | Article | MR 407320 | Zbl 0322.32012

[10] Feix, B. Hyperkähler metrics on cotangent bundles, J. Reine Angew. Math., Tome 532 (2001), pp. 33-46 | Article | MR 1817502 | Zbl 0976.53049

[11] Hitchin, N. J. Twistor spaces, Einstein metrics and isomonodromic deformations, J. Reine Angew. Math., Tome 42 (1995) no. 1, pp. 30-112 | MR 1350695 | Zbl 0861.53049

[12] Kollár, J. Rational curves on algebraic varieties, Springer-Verlag, Berlin, Ergebnisse der Mathematik und ihrer Grenzgebiete. (1996) | MR 1440180 | Zbl 0877.14012

[13] Lebrun, C. -space with a cosmological constant, Proc. Roy. Soc. London Ser. A, Tome 380 (1982) no. 1778, pp. 171-185 | Article | MR 652038 | Zbl 0549.53042

[14] Lebrun, C. Twistor CR manifolds and three-dimensional conformal geometry, Trans. Amer. Math. Soc., Tome 284 (1984) no. 2, pp. 601-616 | Article | MR 743735 | Zbl 0513.53006

[15] Lee, J. M.; Melrose, R. Boundary behaviour of the complex Monge-Ampère equation, Acta Math., Tome 148 (1982), pp. 159-192 | Article | MR 666109 | Zbl 0496.35042