Nous montrons qu’une variété CR strictement pseudoconvexe, de dimension 3, analytique réelle, est le bord à l’infini d’une unique métrique d’Einstein autoduale, définie dans un petit voisinage. La preuve s’appuie sur une construction nouvelle d’espaces de twisteurs à l’aide de courbes rationnelles singulières.
We prove that any real analytic strictly pseudoconvex CR 3-manifold is the boundary (at infinity) of a unique selfdual Einstein metric defined in a neighborhood. The proof uses a new construction of twistor space based on singular rational curves.
@article{AIF_2007__57_4_1161_0, author = {Biquard, Olivier}, title = {Sur les vari\'et\'es CR de dimension 3 et~les~twisteurs}, journal = {Annales de l'Institut Fourier}, volume = {57}, year = {2007}, pages = {1161-1180}, doi = {10.5802/aif.2290}, zbl = {1124.53014}, mrnumber = {2339324}, language = {fr}, url = {http://dml.mathdoc.fr/item/AIF_2007__57_4_1161_0} }
Biquard, Olivier. Sur les variétés CR de dimension 3 et les twisteurs. Annales de l'Institut Fourier, Tome 57 (2007) pp. 1161-1180. doi : 10.5802/aif.2290. http://gdmltest.u-ga.fr/item/AIF_2007__57_4_1161_0/
[1] Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A, Tome 362 (1998) no. 1711, pp. 425-461 | MR 506229 | Zbl 0389.53011
[2] Métriques d’Einstein asymptotiquement symétriques, Astérisque, Tome 265 (2000), pp. vi+109 | Zbl 0967.53030
[3] Métriques autoduales sur la boule, Invent. math., Tome 148 (2002) no. 3, pp. 545-607 | Article | MR 1908060 | Zbl 1040.53061
[4] Autodual Einstein versus Kähler-Einstein, Geom. Funct. Anal., Tome 15 (2005) no. 3, pp. 598-633 | Article | MR 2221145 | Zbl 1082.53026
[5] Cauchy-Riemann 3-Manifolds and Einstein Fillings, Perspectives in Riemannian Geometry, American Mathematical Society (CRM Proceedings and Lecture Notes) Tome 40 (2006), pp. 27-46 | MR 2251002 | Zbl 1109.53047 | Zbl 05066641
[6] Einstein metrics and complex singularities, Invent. Math., Tome 156 (2004) no. 2, pp. 405-443 | Article | MR 2052611 | Zbl 1061.53026
[7] Real hypersurfaces in complex manifolds, Acta Math., Tome 133 (1974) no. 3, pp. 219-271 | Article | MR 425155 | Zbl 0302.32015
[8] Higher-dimensional algebraic geometry, Springer-Verlag, New York, Universitext (1961) | MR 1841091 | Zbl 0978.14001
[9] Monge-Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains, Ann. of Math. (2), Tome 103 (1976) no. 2, pp. 395-416 | Article | MR 407320 | Zbl 0322.32012
[10] Hyperkähler metrics on cotangent bundles, J. Reine Angew. Math., Tome 532 (2001), pp. 33-46 | Article | MR 1817502 | Zbl 0976.53049
[11] Twistor spaces, Einstein metrics and isomonodromic deformations, J. Reine Angew. Math., Tome 42 (1995) no. 1, pp. 30-112 | MR 1350695 | Zbl 0861.53049
[12] Rational curves on algebraic varieties, Springer-Verlag, Berlin, Ergebnisse der Mathematik und ihrer Grenzgebiete. (1996) | MR 1440180 | Zbl 0877.14012
[13] -space with a cosmological constant, Proc. Roy. Soc. London Ser. A, Tome 380 (1982) no. 1778, pp. 171-185 | Article | MR 652038 | Zbl 0549.53042
[14] Twistor CR manifolds and three-dimensional conformal geometry, Trans. Amer. Math. Soc., Tome 284 (1984) no. 2, pp. 601-616 | Article | MR 743735 | Zbl 0513.53006
[15] Boundary behaviour of the complex Monge-Ampère equation, Acta Math., Tome 148 (1982), pp. 159-192 | Article | MR 666109 | Zbl 0496.35042