On considère l’application du billard dans le cube de . On code cette application par les faces du cube. On obtient un langage, dont on cherche à évaluer la complexité. On montre que l’ordre de grandeur de cette fonction est .
We consider the billiard map in the hypercube of . We obtain a language by coding the billiard map by the faces of the hypercube. We investigate the complexity function of this language. We prove that is the order of magnitude of the complexity.
@article{AIF_2007__57_3_719_0, author = {Bedaride, Nicolas and Hubert, Pascal}, title = {Billiard complexity in the hypercube}, journal = {Annales de l'Institut Fourier}, volume = {57}, year = {2007}, pages = {719-738}, doi = {10.5802/aif.2274}, zbl = {1138.37017}, mrnumber = {2336827}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2007__57_3_719_0} }
Bedaride, Nicolas; Hubert, Pascal. Billiard complexity in the hypercube. Annales de l'Institut Fourier, Tome 57 (2007) pp. 719-738. doi : 10.5802/aif.2274. http://gdmltest.u-ga.fr/item/AIF_2007__57_3_719_0/
[1] Complexity of sequences defined by billiard in the cube, Bull. Soc. Math. France, Tome 122 (1994) no. 1, pp. 1-12 | Numdam | MR 1259106 | Zbl 0791.58034
[2] Complexity of trajectories in rectangular billiards, Comm. Math. Phys., Tome 174 (1995) no. 1, pp. 43-56 | Article | MR 1372799 | Zbl 0839.11006
[3] Billiard complexity in rational polyhedra, Regul. Chaotic Dyn., Tome 8 (2003) no. 1, pp. 97-104 | Article | MR 1963971 | Zbl 1023.37024
[4] Entropy of polyhedral billiard (2005) (submitted) | Zbl 1200.37034
[5] A generalization of Baryshnikov’s formula. (2006) (Preprint)
[6] A geometric proof of the enumeration formula for Sturmian words, Internat. J. Algebra Comput., Tome 3 (1993) no. 3, pp. 349-355 | Article | MR 1240390 | Zbl 0802.68099
[7] Complexité et facteurs spéciaux, Bull. Belg. Math. Soc. Simon Stevin, Tome 4 (1997) no. 1, pp. 67-88 (Journées Montoises (Mons, 1994)) | MR 1440670 | Zbl 0921.68065
[8] Complexity and growth for polygonal billiards, Ann. Inst. Fourier, Tome 52 (2002) no. 3, pp. 835-847 | Article | Numdam | MR 1907389 | Zbl 1115.37312 | Zbl 01794816
[9] Intersection theory, Springer-Verlag, Tome 2 (1998), pp. xiv+470 | MR 1644323 | Zbl 0885.14002
[10] Local instability of orbits in polygonal and polyhedral billiards, Comm. Math. Phys., Tome 169 (1995) no. 3, pp. 463-473 | Article | MR 1328732 | Zbl 0924.58043
[11] An introduction to the theory of numbers, The Clarendon Press Oxford University Press, New York (1979) | MR 568909 | Zbl 0020.29201
[12] Complexité de suites définies par des billards rationnels, Bull. Soc. Math. France, Tome 123 (1995) no. 2, pp. 257-270 | Numdam | MR 1340290 | Zbl 0836.58013
[13] The growth rate for the number of singular and periodic orbits for a polygonal billiard, Comm. Math. Phys., Tome 111 (1987) no. 1, pp. 151-160 | Article | MR 896765 | Zbl 0631.58020
[14] The growth rate of trajectories of a quadratic differential, Ergodic Theory Dynam. Systems, Tome 10 (1990) no. 1, pp. 151-176 | Article | MR 1053805 | Zbl 0706.30035
[15] On the number of factors of Sturmian words, Theoret. Comput. Sci., Tome 82 (1991) no. 1, Algorithms Automat. Complexity Games, pp. 71-84 | Article | MR 1112109 | Zbl 0728.68093
[16] Symbolic dynamics II. Sturmian trajectories, Amer. J. Math., Tome 62 (1940), pp. 1-42 | Article | MR 745 | Zbl 0022.34003