On montre que si la conjecture de Farrell-Jones en -théorie algébrique est vérifiée alors celle de la -théorie hermitienne est équivalente à l’existence d’un entier tel que “assembly map” soit un isomorphisme en degré et .
We prove that if the Farrell-Jones conjecture for algebraic -theory is true then the same conjecture for hermitian -theory is equivalent to the fact that it exists such that the assembly map is an isomorphism in degrees and .
@article{AIF_2007__57_1_197_0, author = {Battikh, Naoufel}, title = {Relation entre les conjectures de Farrell-Jones en $K$-th\'eories alg\'ebrique et hermitienne}, journal = {Annales de l'Institut Fourier}, volume = {57}, year = {2007}, pages = {197-207}, doi = {10.5802/aif.2256}, zbl = {1126.19005}, mrnumber = {2313090}, language = {fr}, url = {http://dml.mathdoc.fr/item/AIF_2007__57_1_197_0} }
Battikh, Naoufel. Relation entre les conjectures de Farrell-Jones en $K$-théories algébrique et hermitienne. Annales de l'Institut Fourier, Tome 57 (2007) pp. 197-207. doi : 10.5802/aif.2256. http://gdmltest.u-ga.fr/item/AIF_2007__57_1_197_0/
[1] On the Farrell-Jones conjectures for higher algebraic -theory (2003) (Preprintreihe SFB) | Zbl 1073.19002
[2] Isomorphism conjectures in algebraic -theory, J. Amer, Math. Soc., Tome 6 (1993) no. 2, pp. 249-297 | MR 1179537 | Zbl 0798.57018
[3] The whitehead group of polynomial extension, Inst. hautes études sci., Tome 22 (1964), pp. 61-79 | Article | Numdam | MR 174605 | Zbl 0248.18026
[4] Borel’s conjecture, Novikov’s conjecture and the -theoritic analogue, World scientific book, Singapour (1989) | MR 1119074 | Zbl 0744.57018
[5] Le théorème fondamental de la -théorie hermitienne, Annals of mathematics, Tome 112 (1980), pp. 259-282 | Article | MR 592292 | Zbl 0483.18008
[6] -théorie algébrique et représentation de groupes, Ann. Sci. Ecole Normale Sup. Sér. 4, Tome 9 (1976) no. 3, pp. 309-377 | Numdam | MR 447373 | Zbl 0362.18014
[7] Generalised homology theories, Trans. A. M. S, Tome 102 (1962), pp. 227-283 | Article | MR 137117 | Zbl 0124.38302