Dans cet article nous montrons que toute hypersurface Kählerienne complète immergée dans un espace Euclidien est le produit d’une surface de et d’un facteur Euclidien .
In this note we show that any complete Kähler (immersed) Euclidean hypersurface must be the product of a surface in with an Euclidean factor .
@article{AIF_2007__57_1_155_0, author = {Florit, Luis A. and Zheng, Fangyang}, title = {Complete real K\"ahler Euclidean hypersurfaces are cylinders}, journal = {Annales de l'Institut Fourier}, volume = {57}, year = {2007}, pages = {155-161}, doi = {10.5802/aif.2254}, zbl = {1119.53005}, mrnumber = {2313088}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2007__57_1_155_0} }
Florit, Luis A.; Zheng, Fangyang. Complete real Kähler Euclidean hypersurfaces are cylinders. Annales de l'Institut Fourier, Tome 57 (2007) pp. 155-161. doi : 10.5802/aif.2254. http://gdmltest.u-ga.fr/item/AIF_2007__57_1_155_0/
[1] A complex analogue of Hartman-Nirenberg cylinder theorem, J. Differential Geom., Tome 7 (1972), pp. 453-460 | MR 383307 | Zbl 0272.53040
[2] On a class of hypersurfaces of , Duke Math. J., Tome 41 (1974), pp. 865-874 | Article | MR 350661 | Zbl 0304.53044
[3] Real Kähler submanifolds and uniqueness of the Gauss map, J. Differential Geom., Tome 22 (1985), pp. 13-28 | MR 826421 | Zbl 0587.53051
[4] Rigidity of complete Euclidean hypersurfaces, J. Differential Geom., Tome 31 (1990), pp. 401-416 | MR 1037409 | Zbl 0667.53003
[5] Complete real Kähler minimal submanifolds, J. Reine Angew. Math., Tome 419 (1991), pp. 1-8 | MR 1116914 | Zbl 0726.53041
[6] On real Kähler Euclidean submanifolds with non-negative Ricci curvature, J. Eur. Math. Soc., Tome 7 (2005), pp. 1-11 | Article | MR 2120988 | Zbl 02148274
[7] Complete real Kähler Euclidean submanifolds in codimension two (Preprint at http://www.preprint.impa.br/Shadows/SERIE_A/2004/306.html)
[8] A local and global splitting result for real Kähler Euclidean submanifolds, Arch. Math. (Basel), Tome 84 (2005), pp. 88-95 | MR 2106408 | Zbl 02137047
[9] On isometric immersions in Euclidean space of manifolds with non–negative sectional curvatures II, Trans. Amer. Math. Soc., Tome 147 (1970), pp. 529-540 | Article | Zbl 0194.22702
[10] On spherical image maps whose Jacobians do not change sign, Amer. J. Math., Tome 81 (1959), pp. 901-920 | Article | MR 126812 | Zbl 0094.16303
[11] Kähler manifolds as real hypersurfaces, Duke Math. J., Tome 40 (1973), pp. 207-213 | Article | MR 336666 | Zbl 0257.53055
[12] A note on Kählerian hypersurfaces of spaces of constant curvature, Kumamoto J. Sci. (Math.), Tome 9 (1972), pp. 21-24 | Zbl 0236.53031