Soit un nombre algébrique. Nous étudions les plages de zéros (“lacunes”) dans le -développement de Rényi de l’unité qui contrôle l’ensemble des -entiers. En utilisant une version de l’inégalité de Liouville qui étend des théorèmes d’approximation de Mahler et de Güting, on montre que les plages de zéros dans présentent une “lacunarité” asymptotiquement bornée supérieurement par , où est la mesure de Mahler de . La preuve de ce résultat fournit de manière naturelle une nouvelle classification des nombres algébriques en classes appelées Q que nous comparons à la classification de Bertrand-Mathis avec les classes C à C (reportée dans un article de Blanchard). Cette nouvelle classification repose sur la valeur asymptotique maximale du “quotient de lacune” de la série “lacunaire” associée à . Comme corollaire, tous les nombres de Salem sont dans la classe CQ Q Q ; ce résultat est également obtenu par un théorème récent qui généralise le théorème de Thue-Siegel-Roth donné par Corvaja.
Let be an algebraic number. We study the strings of zeros (“gaps”) in the Rényi -expansion of unity which controls the set of -integers. Using a version of Liouville’s inequality which extends Mahler’s and Güting’s approximation theorems, the strings of zeros in are shown to exhibit a “gappiness” asymptotically bounded above by , where is the Mahler measure of . The proof of this result provides in a natural way a new classification of algebraic numbers with classes called Q which we compare to Bertrand-Mathis’s classification with classes C to C (reported in an article by Blanchard). This new classification relies on the maximal asymptotic “quotient of the gap” value of the “gappy” power series associated with . As a corollary, all Salem numbers are in the class CQ Q Q ; this result is also directly proved using a recent generalization of the Thue-Siegel-Roth Theorem given by Corvaja.
@article{AIF_2006__56_7_2565_0, author = {Verger-Gaugry, Jean-Louis}, title = {On gaps in R\'enyi $\beta $-expansions of unity for $\beta > 1$ an algebraic number}, journal = {Annales de l'Institut Fourier}, volume = {56}, year = {2006}, pages = {2565-2579}, doi = {10.5802/aif.2250}, zbl = {pre05176579}, mrnumber = {2290791}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2006__56_7_2565_0} }
Verger-Gaugry, Jean-Louis. On gaps in Rényi $\beta $-expansions of unity for $\beta > 1$ an algebraic number. Annales de l'Institut Fourier, Tome 56 (2006) pp. 2565-2579. doi : 10.5802/aif.2250. http://gdmltest.u-ga.fr/item/AIF_2006__56_7_2565_0/
[1] Transcendance “à la Liouville” de certains nombres réels, C. R. Acad. Sci. Paris, Tome 338 (2004) no. I, pp. 511-514 | MR 2057021 | Zbl 1046.11051
[2] The Komornik-Loreti constant is tanscendental, Amer. Math. Monthly, Tome 107 (2000), p. 448-449 | Article | MR 1763399 | Zbl 0997.11052
[3] The ubiquitous Prouhet-Thue-Morse sequence, Sequences and Their Applications, Springer-Verlag, Proceedings of SETA’98 (1999), pp. 1-16 | MR 1843077 | Zbl 1005.11005
[4] Pisot and Salem Numbers, Birkhaüser (1992) | MR 1187044 | Zbl 0772.11041
[5] Questions diverses relatives aux systèmes codés : applications au -shift (preprint)
[6] Développements en base Pisot et répartition modulo , C. R. Acad. Sci. Paris, Tome 285 (1977) no. A, pp. 419-421 | MR 447134 | Zbl 0362.10040
[7] Développements en base et répartition modulo de la suite , Bull. Soc. Math. Fr., Tome 114 (1986), pp. 271-324 | Numdam | MR 878240 | Zbl 0628.58024
[8] -expansions and Symbolic Dynamics, Theoret. Comput. Sci., Tome 65 (1989), pp. 131-141 | Article | MR 1020481 | Zbl 0682.68081
[9] Salem numbers of degree four have periodic expansions, Théorie des Nombres - Number Theory, Walter de Gruyter & Co., Eds. J.M. de Koninck and C. Levesque, Berlin and New York (1989), pp. 57-64 | MR 1024551 | Zbl 0685.12004
[10] On beta expansions for Pisot numbers, Math. Comp., Tome 65 (1996), pp. 841-860 | Article | MR 1325863 | Zbl 0855.11039
[11] On the beta expansion for Salem numbers of degree 6, Math. Comp., Tome 65 (1996), pp. 861-875 | Article | MR 1333306 | Zbl 0848.11048
[12] The beta expansions for Salem numbers, Organic Mathematics, A.M.S., Providence, RI (Canad. Math. Soc. Conf. Proc. 20) (1997), pp. 117-131 | MR 1483916 | Zbl 1053.11536
[13] Beta-integers as natural counting systems for quasicrystals, J. Phys. A: Math. Gen., Tome 31 (1998), pp. 6449-6472 | Article | MR 1644115 | Zbl 0941.52019
[14] Sturmian words, -shifts, and transcendence, Theoret. Comput. Sci., Tome 321 (2004), pp. 395-404 | Article | MR 2076154 | Zbl 1068.68112
[15] Autour du Théorème de Roth, Monath. Math., Tome 124 (1997), pp. 147-175 | Article | MR 1462860 | Zbl 0883.11033
[16] Some New Applications of the Subspace Theorem, Compositio Mathematica, Tome 131 (2002), pp. 319-340 | Article | MR 1905026 | Zbl 1010.11038
[17] Ergodic Theory on compact spaces, Springer Lecture Notes in Math. 527 (1976) | MR 457675 | Zbl 0328.28008
[18] Symmetry groups for beta-lattices, Theor. Comp. Sci., Tome 319 (2004), pp. 281-305 | Article | MR 2074957 | Zbl 1068.52028
[19] Substitutions et -systèmes de numération, Theoret. Comput. Sci., Tome 137 (1995), pp. 219-236 | Article | MR 1311222 | Zbl 0872.11017
[20] The zeta function of the beta transformation, Ergod. Th. and Dynam. Sys., Tome 14 (1994), pp. 237-266 | Article | MR 1279470 | Zbl 0843.58106
[21] Additive and multiplicative properties of point sets based on beta-integers, Theoret. Comput. Sci., Tome 303 (2003), pp. 491-516 | Article | MR 1990778 | Zbl 1036.11034
[22] Finite beta-expansions, Ergod. Theor. Dynam. Sys., Tome 12 (1992), pp. 713-723 | MR 1200339 | Zbl 0814.68065
[23] Number Representation and Finite Automata, London Math. Soc. Lecture Note Ser., Tome 279 (2000), pp. 207-228 | MR 1776760 | Zbl 0976.11003
[24] Numeration systems, 7, Algebraic Combinatorics on Words, Cambridge University Press (2003) | MR 1905123
[25] Pisot-Cyclotomic Integers for Quasilattices, The Mathematics of Long-Range Aperiodic Order, Ed. R. V. Moody, Kluwer Academic Publisher, Dordrecht (1997), pp. 175-198 | MR 1460024 | Zbl 0887.11043
[26] Geometric study of the set of -integers for a Perron number and mathematical quasicrystals, J. Th. Nombres Bordeaux, Tome 16 (2004), pp. 1-25 | Numdam | MR 2145576 | Zbl 1075.11007
[27] Diffraction spectra of weighted Delone sets on -lattices with a quadratic unitary Pisot number (2006) (Ann. Inst. Fourier) | Numdam
[28] Approximation of algebraic numbers by algebraic numbers, Michigan Math. J., Tome 8 (1961), pp. 149-159 | Article | MR 132722 | Zbl 0107.04203
[29] Unique developments in non-integer bases, Amer. Math. Monthly, Tome 105 (1998), pp. 636-639 | Article | MR 1633077 | Zbl 0918.11006
[30] Fundamentals of Diophantine Geometry, Springer-Verlag, New York (1983), pp. 158-187 | MR 715605 | Zbl 0528.14013
[31] Topics in Number Theory, Addison-Wesley, Tome II (1956), pp. 121-160 | MR 80682 | Zbl 0070.03804
[32] The entropies of topological Markov shifts and a related class of algebraic integers, Erg. Th. Dyn. Syst., Tome 4 (1984), pp. 283-300 | Article | MR 766106 | Zbl 0546.58035
[33] Matrices of Perron numbers, J. Number Theory, Tome 40 (1992), pp. 211-217 | Article | MR 1149738 | Zbl 0748.11051
[34] Algebraic Combinatorics on Words, Cambridge University Press (2003) | MR 1905123 | Zbl 1001.68093
[35] Arithmetic properties of lacunary power series with integral coefficients, J. Austr. Math. Soc., Tome 5 (1965), pp. 56-64 | Article | MR 190094 | Zbl 0148.27703
[36] Algebraic independence by Mahler’s method and S-units equations, Compositio Math., Tome 92 (1994), pp. 87-110 | Numdam | MR 1275722 | Zbl 0802.11029
[37] On representation of analytical functions by power series, J. London Math. Soc., Tome 1 (1926), pp. 251-263 ((Addendum), ibid 4 (1929), p. 32) | Article
[38] On the -expansions of real numbers, Acta Math. Acad. Sci. Hung., Tome 11 (1960), pp. 401-416 | Article | MR 142719 | Zbl 0099.28103
[39] Substitutions in dynamics, arithmetics and combinatorics, Springer Lecture Notes in Math. 1794 (2003) | MR 1970385 | Zbl 1014.11015
[40] Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hung., Tome 8 (1957), pp. 477-493 | Article | MR 97374 | Zbl 0079.08901
[41] Symbolic dynamics for -shift and self-normal numbers, Ergod. Th. & Dynam. Sys., Tome 17 (1997), pp. 675-694 | Article | MR 1452189 | Zbl 0908.58017
[42] On periodic expansions of Pisot numbers and Salem numbers, Bull. London Math. Soc., Tome 12 (1980), pp. 269-278 | Article | MR 576976 | Zbl 0494.10040
[43] Diophantine Approximations and Diophantine Equations, Springer Lecture Notes in Math. 1467 (1991) | MR 1176315 | Zbl 0754.11020
[44] Conjugates of beta-numbers and the zero-free domain for a class of analytic functions, Proc. London Math. Soc. (3), Tome 68 (1993), pp. 477-498 | Article | MR 1262305 | Zbl 0820.30007
[45] Groups, tilings, and finite state automata (Summer 1989) (A.M.S. Colloquium Lectures, Boulder)
[46] On self-similar finitely generated uniformly discrete (SFU-) sets and sphere packings, Number Theory and Physics, E.M.S. Publishing House (IRMA Lectures in Mathematics and Theoretical Physics) (2006) | Zbl 1170.52303
[47] Diophantine Approximation on Linear Algebraic Groups. Transcendence Properties of the Exponential Function in Several Variables, Springer-Verlag, Berlin (2000) | MR 1756786 | Zbl 0944.11024