Soit une substitution en un alphabet de deux lettres. Si et commencent par et respectivement, alors possède deux points fixes débutants par et respectivement.
Nous caractériserons les substitutions avec deux points fixes co-finaux (c’est-à-dire, qui diffèrent que par leur préfixe). La démonstration est combinatoire, elle se base sur une étude de répétitions de mots dans les points fixes.
Let be a substitution over a 2-letter alphabet, say . If and begin with and respectively, has two fixed points beginning with and respectively.
We characterize substitutions with two cofinal fixed points (i.e., which differ only by prefixes). The proof is a combinatorial one, based on the study of repetitions of words in the fixed points.
@article{AIF_2006__56_7_2551_0, author = {TAN, Bo and WEN, Zhi-Xiong and WU, Jun and WEN, Zhi-Ying}, title = {Substitutions with Cofinal Fixed Points}, journal = {Annales de l'Institut Fourier}, volume = {56}, year = {2006}, pages = {2551-2563}, doi = {10.5802/aif.2249}, zbl = {1121.68092}, mrnumber = {2290790}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2006__56_7_2551_0} }
TAN, Bo; WEN, Zhi-Xiong; WU, Jun; WEN, Zhi-Ying. Substitutions with Cofinal Fixed Points. Annales de l'Institut Fourier, Tome 56 (2006) pp. 2551-2563. doi : 10.5802/aif.2249. http://gdmltest.u-ga.fr/item/AIF_2006__56_7_2551_0/
[1] Automatic sequences: Theory and Applications, Cambridge University Press, Cambrige (2002) | Zbl 01993704
[2] Représentation géométrique de suites de complexité , Bull. Soc. Math., Tome 119 (1991) no. 2, pp. 199-215 (France) | Numdam | MR 1116845 | Zbl 0789.28011
[3] Pisot substitutions and Rauzy fractals, Bull. Belg. Math. Soc. Simon Stevin, Tome 8 (2001) no. 2, pp. 181-207 | MR 1838930 | Zbl 1007.37001
[4] Decomposition theorem on invertible substitutions, Osaka J. Math., Tome 35 (1998) no. 4, pp. 821-834 | MR 1659624 | Zbl 0924.20040
[5] Combinatorics on words, Cambridge University Press, Cambridge (1997) | MR 1475463 | Zbl 0874.20040
[6] Algebraic combinatorics on words, Cambridge University Press, Cambridge (2002) | MR 1905123 | Zbl 1001.68093
[7] Applied combinatorics on words, Cambridge University Press, Cambridge (2005) | MR 2165687 | Zbl 02183071
[8] Die Isomorphismengruppen der freien Gruppen, Math. Ann, Tome 91 (1924), pp. 169-209 (Available at http://mathlib.sub.uni-goettingen.de/JFM/digit.php?an=JFM+50.0078.04) | Article | MR 1512188
[9] Substitutions in Dynamics, Arithmetics and Combinatorics, Springer, Berlin, Lecture Notes in Mathematics, Tome 1794 (2002) | MR 1970385 | Zbl 1014.11015
[10] An effective solution to the D0L periodicity problem in the binary case, EATCS Bull., Tome 36 (1988), pp. 137-151 | Zbl 0678.68072
[11] The structure of invertible substitutions on a three-letter alphabet, Adv. in Appl. Math., Tome 32 (2004) no. 4, pp. 736-753 | Article | MR 2053843 | Zbl 1082.68092
[12] Local isomorphism of the invertible substitutions, C. R. Acad. Sci. Paris Sér. I Math., Tome 318 (1994) no. 4, pp. 299-304 | MR 1267604 | Zbl 0812.11018
[13] On invertible substitutions with two fixed points, C. R. Math. Acad. Sci. Paris, Tome 334 (2002) no. 9, pp. 727-731 | MR 1905029 | Zbl 0996.68149
[14] Some remarks on invertible substitutions on three letter alphabet, Chinese Sci. Bull., Tome 44 (1999) no. 19, pp. 1755-1760 | Article | MR 1737516 | Zbl 1040.20504