Supposons que ait un sous-espace d’extension bidimensionnel , satisfaisant une condition de régularité, appelée “bonne étoile”, et telle que , où est un composé orienté. Un morphisme du groupe libre sur est une non-abélianisation de si sa matrice de structure est . Nous prouvons qu’il existe une substitution de pavage dont la substitution de frontière est une non-abélianisation de . Une telle substitution de pavage donne un pavage “auto-affine” de avec pour expansion . Dans la dernière section nous trouvons des conditions sur de sorte que n’ait pas de coefficients négatifs.
Suppose has a 2-dimensional expanding subspace , satisfies a regularity condition, called “good star”, and has , where is an oriented compound of . A morphism of the free group on is called a non-abelianization of if it has structure matrix . We show that there is a tiling substitution whose “boundary substitution” is a non-abelianization of . Such a tiling substitution leads to a self-affine tiling of with as its expansion. In the last section we find conditions on so that has no negative entries.
@article{AIF_2006__56_7_2391_0, author = {Furukado, Maki and Ito, Shunji and Robinson, E. Arthur, Jr}, title = {Tilings associated with non-Pisot matrices}, journal = {Annales de l'Institut Fourier}, volume = {56}, year = {2006}, pages = {2391-2435}, doi = {10.5802/aif.2244}, zbl = {1142.15015}, mrnumber = {2290785}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2006__56_7_2391_0} }
Furukado, Maki; Ito, Shunji; Robinson, E. Arthur Jr. Tilings associated with non-Pisot matrices. Annales de l'Institut Fourier, Tome 56 (2006) pp. 2391-2435. doi : 10.5802/aif.2244. http://gdmltest.u-ga.fr/item/AIF_2006__56_7_2391_0/
[1] Complex Analysis, McGraw-Hill (1978) | MR 510197 | Zbl 0395.30001
[2] Determinants and Matrices, Oliver and Boyd, Ltd. (1956) | Zbl 0022.10005
[3] Tilings, quasicrystals, discrete planes, generalized substitutions, and multidimensional continued fractions, Discrete models: combinatorics, computation, and geometry, Maison Inform. Math. Discrèt., Paris (Discrete Math. Theor. Comput. Sci. Proc., AA) (2001) (059-078) | MR 1888763 | Zbl 1017.68147
[4] Pisot substitutions and Rauzy fractals, Bull. Belg. Math. Soc. (2001), pp. 181-207 | MR 1838930 | Zbl 1007.37001
[5] Algebraic theory of Penrose’s nonperiodic tilings of the plane. I, II, Nederl. Akad. Wetensch. Indag. Math., Tome 43 (1981) no. 1, p. 39-52, 53-66 | Zbl 0457.05021
[6] Some properties of invertible substitutions of rank , and higher dimensional substitutions, Osaka J. Math., Tome 40 (2003) no. 2, pp. 543-562 | MR 1988704 | Zbl 1037.20033
[7] Tilings from some non-irreducible, Pisot substitutions, Discrete Math. Theor. Comput. Sci., Tome 7 (2005) no. 1, pp. 81-121 | MR 2164061 | Zbl 1153.37323
[8] Generalized -expansions, substitution tilings and local finiteness (to appear in Transactions Amer. Math. Soc.) | Zbl 1138.37010
[9] Tiling from non-Pisot unimodular matrices (to appear in Hirosihima Math. J.) | MR 2259740 | Zbl 05142642
[10] Connected Markov Partitions of group automorphisms ands Rauzy fractals (Substitution and its applicatoin : Research Report Grant-in-Aid scientific Research (c)(2), (project number 09640291, Japan (2002), p. 41-92)
[11] Canonical substitutions tilings of Ammann-Beenker type, Theoret. Comput. Sci., Tome 319 (2004) no. 1-3, pp. 241-279 | Article | MR 2074956 | Zbl 1047.52015
[12] Modified Jacobi-Perron algorithm and generating Markov partitions for special hyperbolic toral automorphisms, Tokyo J. Math., Tome 16 (1993) no. 2, pp. 441-472 | Article | MR 1247666 | Zbl 0805.11056
[13] Self-similar tilings, Princeton University (1990) (Ph. D. Thesis)
[14] An introduction to symbolic dynamics and coding, Cambridge University Press, Cambridge (1995) | MR 1369092 | Zbl 00822672
[15] Nombres algébriques et substitutions, Bull. Soc. Math. France, Tome 110 (1982) no. 2, pp. 147-178 | Numdam | MR 667748 | Zbl 0522.10032
[16] Symbolic dynamics and tilings of , Symbolic dynamics and its applications, Amer. Math. Soc., Providence, RI (Proc. Sympos. Appl. Math.) Tome 60 (2004), pp. 81-119 | MR 2078847 | Zbl 1076.37010
[17] Quasicrystals and geometry, Cambridge University Press, Cambridge (1995) | MR 1340198 | Zbl 0828.52007