Un nombre de Parry simple est un nombre réel tel que le développement de Rényi de est fini, de la forme . Nous étudions la structure palindromique des mots infinis apériodiques qui sont point fixe d’une substitution associée à un nombre de Parry simple . Nous montrons que le mot contient un nombre infini de palindromes si et seulement si . Les nombres satisfaisant cette condition sont connus sous le nom de nombres de Pisot confluents. Si de plus alors est un mot d’Arnoux-Rauzy. Nous montrons que si est un nombre de Pisot confluent alors , où est le nombre de facteurs de longueur de . Nous donnons aussi une description complète de l’ensemble des palindromes, de sa structure et de ses propriétés.
A simple Parry number is a real number such that the Rényi expansion of is finite, of the form . We study the palindromic structure of infinite aperiodic words that are the fixed point of a substitution associated with a simple Parry number . It is shown that the word contains infinitely many palindromes if and only if . Numbers satisfying this condition are the so-called confluent Pisot numbers. If then is an Arnoux-Rauzy word. We show that if is a confluent Pisot number then , where is the number of palindromes and is the number of factors of length in . We then give a complete description of the set of palindromes, its structure and properties.
@article{AIF_2006__56_7_2131_0, author = {Ambro\v z, Petr and Mas\'akov\'a, Zuzana and Pelantov\'a, Edita and Frougny, Christiane}, title = {Palindromic complexity of infinite words associated with simple Parry numbers}, journal = {Annales de l'Institut Fourier}, volume = {56}, year = {2006}, pages = {2131-2160}, doi = {10.5802/aif.2236}, zbl = {1121.68089}, mrnumber = {2290777}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2006__56_7_2131_0} }
Ambrož, Petr; Masáková, Zuzana; Pelantová, Edita; Frougny, Christiane. Palindromic complexity of infinite words associated with simple Parry numbers. Annales de l'Institut Fourier, Tome 56 (2006) pp. 2131-2160. doi : 10.5802/aif.2236. http://gdmltest.u-ga.fr/item/AIF_2006__56_7_2131_0/
[1] Une caractérisation simple des nombres de Sturm, J. Théor. Nombres Bordeaux, Tome 10 (1998) no. 2, pp. 237-241 | Article | Numdam | MR 1828243 | Zbl 0930.11051
[2] Palindrome complexity, Theoret. Comput. Sci., Tome 292 (2003) no. 1, pp. 9-31 (Selected papers in honor of Jean Berstel) | Article | MR 1964623 | Zbl 1064.68074
[3] Représentation géométrique de suites de complexité , Bull. Soc. Math. France, Tome 119 (1991) no. 2, pp. 199-215 | Numdam | MR 1116845 | Zbl 0789.28011
[4] Complete characterization of substitution invariant Sturmian sequences, Integers, Tome 5 (2005) no. 1, pp. A14, 23 pp. (electronic) | MR 2192233 | Zbl 02214413
[5] Factor versus palindromic complexity of uniformly recurrent infinite words (2006) (To appear in Theor. Comp. Sci.) | MR 2192233 | Zbl 1119.68137
[6] Palindromic complexity of infinite words coding interval exchange transformations, Words 2005, 5 International Conference on Words, actes, UQÀM (Publications du LaCIM) Tome 36 (2005), pp. 113-118
[7] Factor and palindromic complexity for infninite words associated with quadratic non-simple Parry numbers (2006) (Preprint Doppler Institute, Prague)
[8] Pisot-cyclotomic quasilattices and their symmetry semigroups, Quasicrystals and discrete geometry (Toronto, ON, 1995), Amer. Math. Soc., Providence, RI (Fields Inst. Monogr.) Tome 10 (1998), pp. 15-66 | MR 1636775 | Zbl 0916.20025
[9] Propriétés arithmétiques de la -numération, Univesité de la Méditeranée (2005) (Ph. D. Thesis)
[10] Recent results on extensions of Sturmian words, Internat. J. Algebra Comput., Tome 12 (2002) no. 1-2, pp. 371-385 (International Conference on Geometric and Combinatorial Methods in Group Theory and Semigroup Theory (Lincoln, NE, 2000)) | Article | MR 1902372 | Zbl 1007.68141
[11] Infinite words without palindrome (2006) (Preprint)
[12] Invertible susbtitutions and Sturmian words: an application of Rauzy fractals (2006) (To appear in Theoret. Informatics Appl.)
[13] Développements en base de Pisot et répartition modulo , C. R. Acad. Sci. Paris, Tome 285 (1977), pp. 419-421 | MR 447134 | Zbl 0362.10040
[14] Comment écrire les nombres entiers dans une base qui n’est pas entière, Acta Math. Hungar., Tome 54 (1989) no. 3-4, pp. 237-241 | Article | MR 1029085 | Zbl 0695.10005
[15] On the palindromic complexity of infinite words, Internat. J. Found. Comput. Sci., Tome 15 (2004) no. 2, pp. 293-306 | Article | MR 2071459 | Zbl 1067.68113
[16] Beta-integers as natural counting systems for quasicrystals, J. Phys. A, Tome 31 (1998) no. 30, pp. 6449-6472 | Article | MR 1644115 | Zbl 0941.52019
[17] Complexité et facteurs spéciaux, Bull. Belg. Math. Soc. Simon Stevin, Tome 4 (1997) no. 1, pp. 67-88 (Journées Montoises (Mons, 1994)) | MR 1440670 | Zbl 0921.68065
[18] Combinatorial properties of Arnoux-Rauzy subshifts and applications to Schrödinger operators, Rev. Math. Phys., Tome 15 (2003) no. 7, pp. 745-763 | Article | MR 2018286 | Zbl 1081.81521
[19] Epi-Sturmian words and some constructions of de Luca and Rauzy, Theoret. Comput. Sci., Tome 255 (2001) no. 1-2, pp. 539-553 | Article | MR 1819089 | Zbl 0981.68126
[20] Palindromes and Sturmian words, Theoret. Comput. Sci., Tome 223 (1999) no. 1-2, pp. 73-85 | Article | MR 1704637 | Zbl 0930.68116
[21] Substitutions et -systèmes de numération, Theoret. Comput. Sci., Tome 137 (1995) no. 2, pp. 219-236 | Article | MR 1311222 | Zbl 0872.11017
[22] Confluent linear numeration systems, Theoret. Comput. Sci., Tome 106 (1992) no. 2, pp. 183-219 | Article | MR 1192767 | Zbl 0787.68057
[23] Complexity of infinite words associated with beta-expansions, Theor. Inform. Appl., Tome 38 (2004) no. 2, pp. 163-185 (Corrigendum. Theor. Inform. Appl. 38 (2004), 269–271.) | Article | Numdam | Numdam | MR 2060775 | Zbl 1104.11013
[24] Infinite left special branches in words associated with beta expansions (2005) (To appear in J. Autom. Lang. Comb.)
[25] Singular continuous spectrum for palindromic Schrödinger operators, Comm. Math. Phys., Tome 174 (1995) no. 1, pp. 149-159 | Article | MR 1372804 | Zbl 0839.11009
[26] Episturmian words and episturmian morphisms, Theoret. Comput. Sci., Tome 276 (2002) no. 1-2, pp. 281-313 | Article | MR 1896357 | Zbl 1002.68116
[27] Interval exchange transformations, Math. Z., Tome 141 (1975), pp. 25-31 | Article | MR 357739 | Zbl 0278.28010
[28] Algebraic Combinatorics on Words, Cambridge University Press, Cambridge, Encyclopedia of Mathematics and its Applications, Tome 90 (2002) | MR 1905123 | Zbl 1001.68093
[29] On the -expansions of real numbers, Acta Math. Acad. Sci. Hungar., Tome 11 (1960), pp. 401-416 | Article | MR 142719 | Zbl 0099.28103
[30] Substitution invariant Sturmian bisequences, J. Théor. Nombres Bordeaux, Tome 11 (1999) no. 1, pp. 201-210 (Les XXèmes Journées Arithmétiques (Limoges, 1997)) | Article | Numdam | MR 1730440 | Zbl 0978.11005
[31] Substitutions in Dynamics, Arithmetics and Combinatorics, Springer Verlag, Lecture Notes in Mathematics, Tome 1794 (2002) (402 pages) | MR 1970385 | Zbl 1014.11015
[32] Substitution dynamical systems—spectral analysis, Springer-Verlag, Berlin, Lecture Notes in Mathematics, Tome 1294 (1987) | MR 924156 | Zbl 0642.28013
[33] Échanges d’intervalles et transformations induites, Acta Arith., Tome 34 (1979) no. 4, pp. 315-328 | MR 543205 | Zbl 0414.28018
[34] Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar, Tome 8 (1957), pp. 477-493 | Article | MR 97374 | Zbl 0079.08901
[35] Conjugates of beta-numbers and the zero-free domain for a class of analytic functions, Proc. London Math. Soc. (3), Tome 68 (1994) no. 3, pp. 477-498 | Article | MR 1262305 | Zbl 0820.30007
[36] On Sturmian sequences which are invariant under some substitutions, Number theory and its applications (Kyoto, 1997), Kluwer Acad. Publ., Dordrecht (Dev. Math.) Tome 2 (1999), pp. 347-373 | MR 1738827 | Zbl 0971.11007