Nous étudions la contribution des états résonnants d’énergie nulle aux singularités de la résolvante près de zéro de l’opérateur de Schrödinger sur les variétés riemanniennes à bout conique. Sous une condition non-captive à haute énergie, nous obtenons le développement asymptotique du groupe de Schrödinger pour grand.
For Schrödinger operator on Riemannian manifolds with conical end, we study the contribution of zero energy resonant states to the singularity of the resolvent of near zero. Long-time expansion of the Schrödinger group is obtained under a non-trapping condition at high energies.
@article{AIF_2006__56_6_1903_0, author = {Wang, Xue Ping}, title = {Asymptotic expansion in time of the Schr\"odinger group on conical manifolds}, journal = {Annales de l'Institut Fourier}, volume = {56}, year = {2006}, pages = {1903-1945}, doi = {10.5802/aif.2230}, zbl = {1118.35022}, mrnumber = {2282678}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2006__56_6_1903_0} }
Wang, Xue Ping. Asymptotic expansion in time of the Schrödinger group on conical manifolds. Annales de l'Institut Fourier, Tome 56 (2006) pp. 1903-1945. doi : 10.5802/aif.2230. http://gdmltest.u-ga.fr/item/AIF_2006__56_6_1903_0/
[1] Low-energy parameters in nonrelativistic scattering theory, Ann. Physics, Tome 148 (1983), pp. 308-326 | Article | MR 714194 | Zbl 0542.35056
[2] There is no Efimov effect for four or more particles, Phys. Rev. D, Tome 7 (1973), pp. 2517-2519 | Article | MR 366267
[3] On Efimov’s effect: A new pathology of three-particle systems, Phys. Lett. B, Tome 35 (1971), p. 25-27; II. Phys. Lett. D, 5 (1972), 1992-2002 | Article
[4] Spectral asymmetry and Riemannian geometry I, Math. Proc. Cambridge Phil. Soc., Tome 77 (1975), pp. 43-69 | Article | MR 397797 | Zbl 0297.58008
[5] Threshold scattering in two dimensions, Ann. Inst. H. Poincaré, Sect. A, Tome 48 (1988), pp. 175-204 | Numdam | MR 952661 | Zbl 0696.35040
[6] Opérateurs à indices, II, Séminaire d’analyse fonctionnelle, Publication des séminaires mathématiques, Univ. Rennes 1 (1973) | MR 481502
[7] An index theorem for first order regular singular operators, Amer. J. Math., Tome 110 (1988), pp. 659-714 | Article | MR 955293 | Zbl 0664.58035
[8] Strichartz estimates for the wave and Schrödinger equations with the inverse-square potentials, J. Funct. Analysis, Tome 203 (2003), pp. 519-549 | Article | MR 2003358 | Zbl 1030.35024
[9] Uniform estimates of the resolvent of the Laplace-Beltrami operator on infinite volume Riemannian manifolds, II, Ann. Inst. H. Poincaré, Tome 3 (2002), pp. 673-691 | MR 1933365 | Zbl 1021.58016
[10] Théorème de l’indice sur les variétés non-compactes, J. reine angew. Math., Tome 541 (2001), pp. 81-115 | Article | MR 1876286 | Zbl 1014.58012
[11] A topological criterion for the existence of half-bound states, J. London Math. Soc., Tome 65 (2002), pp. 757-768 | Article | MR 1895746 | Zbl 1027.58023
[12] Le saut en zéro de la fonction de décalage spectral, J. Funct. Anal., Tome 212 (2004), pp. 222-260 | Article | MR 2067165 | Zbl 1081.58019
[13] Zero energy asymptotics of the resolvent for a class of slowly decaying potential, Preprint (2003)
[14] Exponential bounds and absence of positive eigenvalues for -body Schrödinger operators, Comm. Math. Phys., Tome 87 (1982/83), pp. 429-447 | Article | MR 682117 | Zbl 0509.35061
[15] Eigenvalues of Schrödinger operators with potential asymptotically homogeneous of degree , Preprint (October 2005)
[16] The Schrödinger propagators for scattering metrics, Preprint (2003)
[17] Spectral properties of Schrödinger operators and time decay of wave functions, Duke Math. J., Tome 46 (1979), pp. 583-611 | Article | MR 544248 | Zbl 0448.35080
[18] Multiple commutator estimates and resolvent smoothness in quantum scattering theory, Ann. Inst. H. Poincaré, Sect A, Tome 41 (1984), pp. 207-225 | Numdam | MR 769156 | Zbl 0561.47007
[19] A unified approach to resolvent expansions at thresholds, Reviews Math. Phys., Tome 13 (2001), pp. 717-754 | Article | MR 1841744 | Zbl 1029.81067
[20] Asymptotic Theory of Elliptic Boundary Value Problemes in Singularly Perturbed Domains, Birkhäuser, Boston-Berlin Tome 1 (2000) | Zbl 01486603
[21] The Atiyah-Patodi-Singer index theorem, A. K. Peters Classics, Massachusetts (1993) | MR 1348401 | Zbl 0796.58050
[22] Absence of singular continuous spectrum for certain self-adjoint operators, Comm. Math. Phys., Tome 78 (1981), pp. 391-408 | Article | MR 603501 | Zbl 0489.47010
[23] Relative zeta functions, relative determinants, and scattering theory, Comm. Math. Physics, Tome 192 (1998), pp. 309-347 | Article | MR 1617554 | Zbl 0947.58025
[24] Asymptotic expansions in time for solutions of Schrödinger type equations, J. Funct. Analysis, Tome 49 (1982), pp. 10-53 | Article | MR 680855 | Zbl 0499.35019
[25] Low energy asymptotics for Schrödinger operators with slowly decreasing potentials, Comm. Math. Phys., Tome 161 (1994), pp. 63-76 | Article | MR 1266070 | Zbl 0812.35110
[26] Noncentral potentials: the generalized Levinson theorem and the structure of the spectrum, J. Math. Phys., Tome 18 (1977), pp. 1582-1588 | Article | MR 446169
[27] Scattering Theory of Waves and Particles, Springer-Verlag, Berlin (1982) | MR 666397 | Zbl 0496.47011
[28] Asymptotics and Special Functions, A. K. Peters Classics, Massachusetts (1997) | MR 1429619 | Zbl 0982.41018
[29] Local decay of scattering solutions to Schrödinger’s equation, Comm. Math. Phys., Tome 61 (1978), pp. 149-168 | Article | MR 495958 | Zbl 0381.35023
[30] Relative time-delay for perturbations of elliptic operators and semi-classical asymptotics, J. Funct. Analysis, Tome 126 (1994), pp. 36-82 | Article | MR 1305063 | Zbl 0813.35073
[31] On the short wave asymptotic behaviour of solutions of stationary problems and the asymptoic behaviou as of solutions of non-stationary problems, Russ. Math. Survey, Tome 30 (1975), pp. 1-58 | Article | MR 415085 | Zbl 0318.35006
[32] Propagation of singularities in three-body scattering, Astérisque, Tome 262 (2000), pp. 6-151 | MR 1744795 | Zbl 0941.35001
[33] Semiclassical estimates in asymptotically Euclidean scattering, Comm. in Math. Phys., Tome 212 (2000), pp. 205-217 | Article | MR 1764368 | Zbl 0955.58023
[34] Time-decay of scattering solutions and classical trajectories, Ann. Inst. H. Poincaré, Sect A, Tome 47 (1987), pp. 25-37 | Numdam | MR 912755 | Zbl 0641.35018
[35] Time-decay of scattering solutions and resolvent estimates for semi-classical Schrödinger operators, J. Diff. Equations, Tome 71 (1988), pp. 348-395 | Article | MR 927007 | Zbl 0651.35022
[36] Asymptotic behavior of the resolvent of -body Schrödinger operators near a threshold, Ann. Inst. H. Poincaré, Tome 4 (2003), pp. 553-600 | MR 2007257 | Zbl 1049.81026
[37] On the existence of the -body Efimov effect, J. Funct. Analysis, Tome 209 (2004), pp. 137-161 | Article | MR 2039219 | Zbl 1059.81061
[38] Threshold energy resonance in geometric scattering, Proceedings of Symposium “Scattering and Spectral Theory”, August 2003, Recife, Brazil, Matemática Contemporânea, Tome 26 (2004), pp. 135-164 | MR 2111819 | Zbl 02208082
[39] A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, Cambridge (1994) | MR 1349110 | Zbl 0849.33001
[40] The low-energy scattering for slowly decreasing potentials, Comm. Math. Phys., Tome 85 (1982), pp. 177-198 | Article | MR 675998 | Zbl 0509.35065