Asymptotic expansion in time of the Schrödinger group on conical manifolds
[Développement asymptotique du groupe de Schrödinger sur des variétés coniques]
Wang, Xue Ping
Annales de l'Institut Fourier, Tome 56 (2006), p. 1903-1945 / Harvested from Numdam

Nous étudions la contribution des états résonnants d’énergie nulle aux singularités de la résolvante près de zéro de l’opérateur de Schrödinger P sur les variétés riemanniennes à bout conique. Sous une condition non-captive à haute énergie, nous obtenons le développement asymptotique du groupe de Schrödinger U(t)=e -itP pour t grand.

For Schrödinger operator P on Riemannian manifolds with conical end, we study the contribution of zero energy resonant states to the singularity of the resolvent of P near zero. Long-time expansion of the Schrödinger group U(t)=e -itP is obtained under a non-trapping condition at high energies.

Publié le : 2006-01-01
DOI : https://doi.org/10.5802/aif.2230
Classification:  35P25,  47A40,  81U10
@article{AIF_2006__56_6_1903_0,
     author = {Wang, Xue Ping},
     title = {Asymptotic expansion in time of the Schr\"odinger group on conical manifolds},
     journal = {Annales de l'Institut Fourier},
     volume = {56},
     year = {2006},
     pages = {1903-1945},
     doi = {10.5802/aif.2230},
     zbl = {1118.35022},
     mrnumber = {2282678},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2006__56_6_1903_0}
}
Wang, Xue Ping. Asymptotic expansion in time of the Schrödinger group on conical manifolds. Annales de l'Institut Fourier, Tome 56 (2006) pp. 1903-1945. doi : 10.5802/aif.2230. http://gdmltest.u-ga.fr/item/AIF_2006__56_6_1903_0/

[1] Albeverio, S.; Bollé, D.; Gesztesy, F.; Hoegh-Krohn, R. Low-energy parameters in nonrelativistic scattering theory, Ann. Physics, Tome 148 (1983), pp. 308-326 | Article | MR 714194 | Zbl 0542.35056

[2] Amado, R. D.; Greenwood, F. C. There is no Efimov effect for four or more particles, Phys. Rev. D, Tome 7 (1973), pp. 2517-2519 | Article | MR 366267

[3] Amado, R. D.; Noble, J. V. On Efimov’s effect: A new pathology of three-particle systems, Phys. Lett. B, Tome 35 (1971), p. 25-27; II. Phys. Lett. D, 5 (1972), 1992-2002 | Article

[4] Atiyah, M. F.; Patodi, V. K.; Singer, I. M. Spectral asymmetry and Riemannian geometry I, Math. Proc. Cambridge Phil. Soc., Tome 77 (1975), pp. 43-69 | Article | MR 397797 | Zbl 0297.58008

[5] Bollé, D.; Gesztesy, F.; Danneels, C. Threshold scattering in two dimensions, Ann. Inst. H. Poincaré, Sect. A, Tome 48 (1988), pp. 175-204 | Numdam | MR 952661 | Zbl 0696.35040

[6] Bolley, P.; Camus, J. Opérateurs à indices, II, Séminaire d’analyse fonctionnelle, Publication des séminaires mathématiques, Univ. Rennes 1 (1973) | MR 481502

[7] Brüning, J.; Seeley, R. T. An index theorem for first order regular singular operators, Amer. J. Math., Tome 110 (1988), pp. 659-714 | Article | MR 955293 | Zbl 0664.58035

[8] Burq, N.; Planchon, F.; Stalke, J. G.; Shadi Tahvildar-Zadeh, A. Strichartz estimates for the wave and Schrödinger equations with the inverse-square potentials, J. Funct. Analysis, Tome 203 (2003), pp. 519-549 | Article | MR 2003358 | Zbl 1030.35024

[9] Cardoso, F.; Vodev, G. Uniform estimates of the resolvent of the Laplace-Beltrami operator on infinite volume Riemannian manifolds, II, Ann. Inst. H. Poincaré, Tome 3 (2002), pp. 673-691 | MR 1933365 | Zbl 1021.58016

[10] Carron, G. Théorème de l’indice sur les variétés non-compactes, J. reine angew. Math., Tome 541 (2001), pp. 81-115 | Article | MR 1876286 | Zbl 1014.58012

[11] Carron, G. A topological criterion for the existence of half-bound states, J. London Math. Soc., Tome 65 (2002), pp. 757-768 | Article | MR 1895746 | Zbl 1027.58023

[12] Carron, G. Le saut en zéro de la fonction de décalage spectral, J. Funct. Anal., Tome 212 (2004), pp. 222-260 | Article | MR 2067165 | Zbl 1081.58019

[13] Fournais, S.; Skibsted, E. Zero energy asymptotics of the resolvent for a class of slowly decaying potential, Preprint (2003)

[14] Froese, R.; Herbst, I. Exponential bounds and absence of positive eigenvalues for N-body Schrödinger operators, Comm. Math. Phys., Tome 87 (1982/83), pp. 429-447 | Article | MR 682117 | Zbl 0509.35061

[15] Hassell, A.; Marcshall, S. Eigenvalues of Schrödinger operators with potential asymptotically homogeneous of degree - 2 , Preprint (October 2005)

[16] Hassell, A.; Wunsch, J. The Schrödinger propagators for scattering metrics, Preprint (2003)

[17] Jensen, A.; Kato, T. Spectral properties of Schrödinger operators and time decay of wave functions, Duke Math. J., Tome 46 (1979), pp. 583-611 | Article | MR 544248 | Zbl 0448.35080

[18] Jensen, A.; Mourre, E.; Perry, P. Multiple commutator estimates and resolvent smoothness in quantum scattering theory, Ann. Inst. H. Poincaré, Sect A, Tome 41 (1984), pp. 207-225 | Numdam | MR 769156 | Zbl 0561.47007

[19] Jensen, A.; Nenciu, G. A unified approach to resolvent expansions at thresholds, Reviews Math. Phys., Tome 13 (2001), pp. 717-754 | Article | MR 1841744 | Zbl 1029.81067

[20] Maz’Ya, V.; Nazarov, S.; Plamenevskij, B. Asymptotic Theory of Elliptic Boundary Value Problemes in Singularly Perturbed Domains, Birkhäuser, Boston-Berlin Tome 1 (2000) | Zbl 01486603

[21] Melrose, R. B. The Atiyah-Patodi-Singer index theorem, A. K. Peters Classics, Massachusetts (1993) | MR 1348401 | Zbl 0796.58050

[22] Mourre, E. Absence of singular continuous spectrum for certain self-adjoint operators, Comm. Math. Phys., Tome 78 (1981), pp. 391-408 | Article | MR 603501 | Zbl 0489.47010

[23] Müller, W. Relative zeta functions, relative determinants, and scattering theory, Comm. Math. Physics, Tome 192 (1998), pp. 309-347 | Article | MR 1617554 | Zbl 0947.58025

[24] Murata, M. Asymptotic expansions in time for solutions of Schrödinger type equations, J. Funct. Analysis, Tome 49 (1982), pp. 10-53 | Article | MR 680855 | Zbl 0499.35019

[25] Nakamura, S. Low energy asymptotics for Schrödinger operators with slowly decreasing potentials, Comm. Math. Phys., Tome 161 (1994), pp. 63-76 | Article | MR 1266070 | Zbl 0812.35110

[26] Newton, R. G. Noncentral potentials: the generalized Levinson theorem and the structure of the spectrum, J. Math. Phys., Tome 18 (1977), pp. 1582-1588 | Article | MR 446169

[27] Newton, R. G. Scattering Theory of Waves and Particles, Springer-Verlag, Berlin (1982) | MR 666397 | Zbl 0496.47011

[28] Olver, F. W. J. Asymptotics and Special Functions, A. K. Peters Classics, Massachusetts (1997) | MR 1429619 | Zbl 0982.41018

[29] Rauch, J. Local decay of scattering solutions to Schrödinger’s equation, Comm. Math. Phys., Tome 61 (1978), pp. 149-168 | Article | MR 495958 | Zbl 0381.35023

[30] Robert, D. Relative time-delay for perturbations of elliptic operators and semi-classical asymptotics, J. Funct. Analysis, Tome 126 (1994), pp. 36-82 | Article | MR 1305063 | Zbl 0813.35073

[31] Vainberg, B. R. On the short wave asymptotic behaviour of solutions of stationary problems and the asymptoic behaviou as t of solutions of non-stationary problems, Russ. Math. Survey, Tome 30 (1975), pp. 1-58 | Article | MR 415085 | Zbl 0318.35006

[32] Vasy, A. Propagation of singularities in three-body scattering, Astérisque, Tome 262 (2000), pp. 6-151 | MR 1744795 | Zbl 0941.35001

[33] Vasy, A.; Zworski, M. Semiclassical estimates in asymptotically Euclidean scattering, Comm. in Math. Phys., Tome 212 (2000), pp. 205-217 | Article | MR 1764368 | Zbl 0955.58023

[34] Wang, X. P. Time-decay of scattering solutions and classical trajectories, Ann. Inst. H. Poincaré, Sect A, Tome 47 (1987), pp. 25-37 | Numdam | MR 912755 | Zbl 0641.35018

[35] Wang, X. P. Time-decay of scattering solutions and resolvent estimates for semi-classical Schrödinger operators, J. Diff. Equations, Tome 71 (1988), pp. 348-395 | Article | MR 927007 | Zbl 0651.35022

[36] Wang, X. P. Asymptotic behavior of the resolvent of N-body Schrödinger operators near a threshold, Ann. Inst. H. Poincaré, Tome 4 (2003), pp. 553-600 | MR 2007257 | Zbl 1049.81026

[37] Wang, X. P. On the existence of the N-body Efimov effect, J. Funct. Analysis, Tome 209 (2004), pp. 137-161 | Article | MR 2039219 | Zbl 1059.81061

[38] Wang, X. P. Threshold energy resonance in geometric scattering, Proceedings of Symposium “Scattering and Spectral Theory”, August 2003, Recife, Brazil, Matemática Contemporânea, Tome 26 (2004), pp. 135-164 | MR 2111819 | Zbl 02208082

[39] Watson, G. N. A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, Cambridge (1994) | MR 1349110 | Zbl 0849.33001

[40] Yafaev, D. R. The low-energy scattering for slowly decreasing potentials, Comm. Math. Phys., Tome 85 (1982), pp. 177-198 | Article | MR 675998 | Zbl 0509.35065