Soit un domaine pseudoconvexe en et soit une fonction plurisousharmonique dans . Pour fixé, soit la tranche correspondante de , la restriction de à , et le noyau de Bergman pour le domaine et le poid . En généralisant un résultat récent de Maitani et Yamaguchi (correspondant à et ), on montre que est plurisousharmonique en . On donne aussi une généralisation d’un résultat de Yamaguchi concernant la fonction de Robin et on discute des résultats du même style pour .
Let be a pseudoconvex domain in and let be a plurisubharmonic function in . For each we consider the -dimensional slice of , , let be the restriction of to and denote by the Bergman kernel of with the weight function . Generalizing a recent result of Maitani and Yamaguchi (corresponding to and ) we prove that is a plurisubharmonic function in . We also generalize an earlier results of Yamaguchi concerning the Robin function and discuss similar results in the setting of .
@article{AIF_2006__56_6_1633_0, author = {Berndtsson, Bo}, title = {Subharmonicity properties of the Bergman kernel and some other functions associated to pseudoconvex~domains}, journal = {Annales de l'Institut Fourier}, volume = {56}, year = {2006}, pages = {1633-1662}, doi = {10.5802/aif.2223}, zbl = {1120.32021}, mrnumber = {2282671}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2006__56_6_1633_0} }
Berndtsson, Bo. Subharmonicity properties of the Bergman kernel and some other functions associated to pseudoconvex domains. Annales de l'Institut Fourier, Tome 56 (2006) pp. 1633-1662. doi : 10.5802/aif.2223. http://gdmltest.u-ga.fr/item/AIF_2006__56_6_1633_0/
[1] Entropy jumps in the presence of a spectral gap, Duke Math. J., Tome 119 (2003), pp. 41-63 | Article | MR 1991646 | Zbl 1036.94003
[2] Prekopa’s theorem and Kiselman’s minimum principle for plurisubharmonic functions, Math. Ann., Tome 312 (1998), pp. 785-792 | Article | MR 1660227 | Zbl 0938.32021
[3] On extensions of the Brunn-Minkowski and Prekopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation, J. Funct. Anal., Tome 22 (1976), pp. 366-389 | Article | MR 450480 | Zbl 0334.26009
[4] Holomorphic approximation and estimates for the -equation on strictly pseudoconvex nonsmooth domains, Duke Math. J., Tome 55 (1987), pp. 539-596 | Article | MR 904941 | Zbl 0645.32009
[5] On the strict concavity of the harmonic radius in dimension , J. Math. Pures Appl. (9), Tome 81 (2002), pp. 223-240 | MR 1894062 | Zbl 1027.31003
[6] Santaló’s inequality on by complex interpolation, C. R. Math. Acad. Sci. Paris, Tome 334 (2002), pp. 767-772 | MR 1905037 | Zbl 1002.31003
[7] On Berndtsson’s generalization of Prekopa’s theorem, Math. Z., Tome 249 (2005), pp. 401-410 | Article | MR 2115450 | Zbl 1079.32020
[8] Estimations pour l’opérateur d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète, Ann. Sci. École Norm. Sup. (4), Tome 15 (1982), pp. 457-511 | Numdam | MR 690650 | Zbl 0507.32021
[9] -estimates and existence theorems for the -operator, Acta Math., Tome 113 (1965), pp. 89-152 | Article | MR 179443 | Zbl 0158.11002
[10] The partial Legendre transformation for plurisubharmonic functions, Invent. Math., Tome 49 (1978), pp. 137-148 | Article | MR 511187 | Zbl 0378.32010
[11] Densité des fonctions plurisousharmoniques, Bull. Soc. Math. France., Tome 107 (1979), pp. 295-304 | Numdam | MR 544525 | Zbl 0416.32007
[12] Attenuating the singularities of plurisubharmonic functions, Ann. Polon. Math., Tome 60 (1994), pp. 173-197 | MR 1301603 | Zbl 0827.32016
[13] Robin functions for complex manifolds and applications (2004) (Manuscript)
[14] Variation of Bergman metrics on Riemann surfaces, Math. Annal., Tome 330 (2004), pp. 477-489 | Article | MR 2099190 | Zbl 1077.32006
[15] On logarithmic concave measures and functions, Acad. Sci. Math. (Szeged), Tome 34 (1973), pp. 335-343 | MR 404557 | Zbl 0264.90038
[16] Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Invent. Math., Tome 27 (1974), pp. 53-156 | Article | MR 352516 | Zbl 0289.32003
[17] Sous-ensembles analytiques d’ordre fini ou infini dans , Bull. Soc. Math. France, Tome 100 (1972), pp. 353-408 | Numdam | MR 352517 | Zbl 0246.32009
[18] Variations of pseudoconvex domains over , Michigan Math. J., Tome 36 (1989), pp. 415-457 | Article | MR 1027077 | Zbl 0692.31004