On étudie les champs de vecteurs holomorphes quadratiques et homogènes de qui sont semicomplets : ceux dont les solutions sont uniformes dans leurs domaines maximaux de définition. À un champ générique on associe de façon rationnelle quelques nombres complexes qui s’avèrent entiers dans le cas semicomplet. Ceci montre que, dans l’espace des classes d’équivalence linéaire de champs de vecteurs, les semicomplets sont contenus dans une sorte de réseau. On prouve que les feuilletages de induits par des champs quadratiques semicomplets sont linéarisables au voisinage de leurs points singuliers et on donne quelques familles nouvelles d’exemples dans . Finalement, on classifie les champs semicomplets de qui sont isochores et à singularité isolée.
We investigate the quadratic homogeneous holomorphic vector fields on that are semicomplete, this is, those whose solutions are single-valued in their maximal definition domain. To a generic quadratic vector field we rationally associate some complex numbers that turn out to be integers in the semicomplete case, thus showing that the linear equivalence classes of semicomplete vector fields are contained in some sort of lattice in the space of linear equivalence classes of quadratic ones. We prove that the foliations of induced by semicomplete quadratic vector fields are linearizable in a neighborhood of their singular points and give some new families of examples in . Finally, we classify the semicomplete isochoric vector fields in having an isolated singularity at the origin.
@article{AIF_2006__56_5_1583_0, author = {Guillot, Adolfo}, title = {Semicompleteness of homogeneous quadratic vector fields}, journal = {Annales de l'Institut Fourier}, volume = {56}, year = {2006}, pages = {1583-1615}, doi = {10.5802/aif.2221}, zbl = {1110.37040}, mrnumber = {2273865}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2006__56_5_1583_0} }
Guillot, Adolfo. Semicompleteness of homogeneous quadratic vector fields. Annales de l'Institut Fourier, Tome 56 (2006) pp. 1583-1615. doi : 10.5802/aif.2221. http://gdmltest.u-ga.fr/item/AIF_2006__56_5_1583_0/
[1] Singularities of holomorphic foliations, J. Differential Geometry, Tome 7 (1972), pp. 279-342 | MR 377923 | Zbl 0268.57011
[2] The local linearization problem for smooth -actions, Enseign. Math. (2), Tome 43 (1997) no. 1-2, pp. 133-171 | MR 1460126 | Zbl 0914.57027
[3] Invariant varieties through singularities of holomorphic vector fields, Ann. of Math. (2), Tome 115 (1982) no. 3, pp. 579-595 | Article | MR 657239 | Zbl 0503.32007
[4] Irreducible components of the space of holomorphic foliations of degree two in , , Ann. of Math. (2), Tome 143 (1996) no. 3, pp. 577-612 | Article | MR 1394970 | Zbl 0855.32015
[5] Old and new problems and results in combinatorial number theory, L’Enseignement Mathématique, Université de Genève, Geneva (1980), pp. 128 | MR 592420 | Zbl 0434.10001
[6] Representation theory, Springer-Verlag, New York (1991) (A first course, Readings in Mathematics) | MR 1153249 | Zbl 0744.22001
[7] Singularités des flots holomorphes II, Ann. Inst. Fourier (Grenoble), Tome 47 (1997) no. 4, pp. 1117-1174 | Article | Numdam | MR 1488247 | Zbl 0938.32019
[8] Champs quadratiques uniformisables, ÉNS-Lyon (2001) (Ph. D. Thesis)
[9] Sur les exemples de Lins Neto de feuilletages algébriques, C. R. Math. Acad. Sci. Paris, Tome 334 (2002) no. 9, pp. 747-750 | MR 1905033 | Zbl 1004.37029
[10] Un théorème de point fixe pour les endomorphismes de l’espace projectif avec des applications aux feuilletages algébriques, Bull. Braz. Math. Soc. (N.S.), Tome 35 (2004) no. 3, pp. 345-362 | Article | MR 2106309 | Zbl 02238664
[11] The Painlevé property for quasihomogenous systems and a many-body problem in the plane, Comm. Math. Phys., Tome 256 (2005) no. 1, pp. 181-194 | Article | MR 2134340 | Zbl 1069.81079
[12] Sur les équations d’Halphen et les actions de (2006) (in preparation)
[13] Lectures on Riemann surfaces, Princeton University Press, Princeton, N.J. (1966) (Princeton Mathematical Notes) | MR 207977 | Zbl 0175.36801
[14] Sur certains systèmes d’équations différentielles, Comptes Rendus Hebdomadaires de l’Académie des Sciences, Tome XCII (1881) no. 24, pp. 1404-1406
[15] Ordinary differential equations in the complex domain, Dover Publications Inc., Mineola, NY (1997) (Reprint of the 1976 original) | MR 1452105 | Zbl 0901.34001
[16] Physique théorique. Tome I. Mécanique, Éditions Mir, Moscou (1982) (Quatrième édition revue et complétée)
[17] Some examples for the Poincaré and Painlevé problems, Ann. Sci. École Norm. Sup. (4), Tome 35 (2002) no. 2, pp. 231-266 | Numdam | MR 1914932 | Zbl 01801798
[18] A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc. No., Tome 22 (1957), pp. iii+123 | MR 121424 | Zbl 0178.26502
[19] Singularités des flots holomorphes, Ann. Inst. Fourier (Grenoble), Tome 46 (1996) no. 2, pp. 411-428 | Article | Numdam | MR 1393520 | Zbl 0853.34002
[20] Three-dimensional geometry and topology. Vol. 1, Princeton University Press, Princeton, NJ (1997) (Edited by Silvio Levy) | MR 1435975 | Zbl 0873.57001