Cet article est consacré à la preuve de résultats d’existence presque globale pour des équations de Klein-Gordon sur des hypersurfaces compactes de révolution avec des non-linéarités non hamiltoniennes, lorsque les données sont petites, régulières et radiales. La méthode repose sur l’utilisation de formes normales et sur le fait que les valeurs propres associées à des fonctions propres radiales du Laplacien sont simples et vérifient des propriétés de séparation convenables.
This paper is devoted to the proof of almost global existence results for Klein-Gordon equations on compact revolution hypersurfaces with non-Hamiltonian nonlinearities, when the data are smooth, small and radial. The method combines normal forms with the fact that the eigenvalues associated to radial eigenfunctions of the Laplacian on such manifolds are simple and satisfy convenient asymptotic expansions.
@article{AIF_2006__56_5_1419_0, author = {Delort, Jean-Marc and Szeftel, J\'er\'emie}, title = {Bounded almost global solutions for non hamiltonian semi-linear Klein-Gordon equations with radial data on compact revolution hypersurfaces}, journal = {Annales de l'Institut Fourier}, volume = {56}, year = {2006}, pages = {1419-1456}, doi = {10.5802/aif.2217}, zbl = {1115.35084}, mrnumber = {2273861}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2006__56_5_1419_0} }
Delort, Jean-Marc; Szeftel, Jérémie. Bounded almost global solutions for non hamiltonian semi-linear Klein-Gordon equations with radial data on compact revolution hypersurfaces. Annales de l'Institut Fourier, Tome 56 (2006) pp. 1419-1456. doi : 10.5802/aif.2217. http://gdmltest.u-ga.fr/item/AIF_2006__56_5_1419_0/
[1] Birkhoff normal form for some nonlinear PDEs, Comm. Math. Phys., Tome 234 (2003) no. 2, pp. 253-285 | Article | MR 1962462 | Zbl 1032.37051
[2] Birkhoff normal form for PDEs with tame modulus (2004) (preprint)
[3] Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations, Geom. Funct. Anal., Tome 6 (1996) no. 2, pp. 201-230 | Article | MR 1384610 | Zbl 0872.35007
[4] Existence globale et comportement asymptotique pour l’équation de Klein-Gordon quasi linéaire à données petites en dimension 1, Ann. Sci. École Norm. Sup. (4), Tome 34 (2001) no. 1, pp. 1-61 (Erratum, to appear, Ann. Sci. École Norm. Sup.) | Numdam | MR 1833089 | Zbl 0990.35119
[5] Long-time existence for semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds (to appear Amer. J. Math.) | Zbl 05071303
[6] Long-time existence for small data nonlinear Klein-Gordon equations on tori and spheres, Int. Math. Res. Not., Tome 37 (2004), pp. 1897-1966 | Article | MR 2056326 | Zbl 1079.35070
[7] The spectral theory of periodic differential equations, Scottish Academic Press (1973), pp. x+130 | Zbl 0287.34016
[8] The null condition and global existence to nonlinear wave equations, Lectures in Applied Mathematics, Tome 23 (1986), pp. 293-326 | MR 837683 | Zbl 0599.35105
[9] Normal forms and global existence of solutions to a class of cubic nonlinear Klein-Gordon equations in one-space dimension, Diff. Int. Equations, Tome 10 (1997) no. 3, pp. 499-520 | MR 1744859 | Zbl 0891.35096
[10] Normal forms and quadratic nonlinear Klein-Gordon equations, Comm. Pure Appl. Math., Tome 38 (1985), pp. 685-696 | Article | MR 803256 | Zbl 0597.35101
[11] Large time behavior of solutions to the Klein-Gordon equation with nonlinear dissipative terms (2004) (preprint) | MR 2228565 | Zbl 1107.35087