Orthogonal bundles on curves and theta functions
[Fibrés orthogonaux sur les courbes et fonctions thêta]
Beauville, Arnaud
Annales de l'Institut Fourier, Tome 56 (2006), p. 1405-1418 / Harvested from Numdam

Soient l’espace des modules des fibrés SO r -principaux sur une courbe C, et le fibré déterminant sur . Nous définissons un isomorphisme de H 0 (,) sur le dual de l’espace des fonctions thêta du r-ième ordre sur la Jacobienne de C. Cet isomorphisme identifie l’application rationnelle || * définie par le système linéaire || avec l’application |rΘ| qui associe à un fibré quadratique (E,q) le diviseur thêta Θ E . Les deux composantes + et - de sont envoyées sur les sous-espaces de fonctions paires et impaires respectivement. Finalement nous discutons le problème analogue pour les fibrés symplectiques.

Let be the moduli space of principal SO r -bundles on a curve C, and the determinant bundle on . We define an isomorphism of H 0 (,) onto the dual of the space of r-th order theta functions on the Jacobian of C. This isomorphism identifies the rational map || * defined by the linear system || with the map |rΘ| which associates to a quadratic bundle (E,q) the theta divisor Θ E . The two components + and - of are mapped into the subspaces of even and odd theta functions respectively. Finally we discuss the analogous question for Sp 2r -bundles.

Publié le : 2006-01-01
DOI : https://doi.org/10.5802/aif.2216
Classification:  14H60
Mots clés: fibrés principaux, fibrés orthogonaux, fibrés symplectiques, diviseurs thêta, fonctions thêta généralisées, formule de Verlinde, dualité étrange
@article{AIF_2006__56_5_1405_0,
     author = {Beauville, Arnaud},
     title = {Orthogonal bundles on curves and theta functions},
     journal = {Annales de l'Institut Fourier},
     volume = {56},
     year = {2006},
     pages = {1405-1418},
     doi = {10.5802/aif.2216},
     zbl = {1114.14021},
     mrnumber = {2273860},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2006__56_5_1405_0}
}
Beauville, Arnaud. Orthogonal bundles on curves and theta functions. Annales de l'Institut Fourier, Tome 56 (2006) pp. 1405-1418. doi : 10.5802/aif.2216. http://gdmltest.u-ga.fr/item/AIF_2006__56_5_1405_0/

[1] Alexeev, A.; Meinrenken, E.; Woodward, C. Formulas of Verlinde type for non-simply connected groups (Preprint, math.SG/0005047) | MR 1959587

[2] Beauville, A. Vector bundles on curves and theta functions (Preprint, math.AG/0502179, Proc. of the conf. "Moduli spaces and arithmetic geometry" (Kyoto, 2004). Advanced studies in pure math, to appear)

[3] Beauville, A. Fibrés de rang 2 sur les courbes, fibré déterminant et fonctions thêta II, Bull. Soc. Math. France, Tome 119 (1991) no. 3, pp. 259-291 | Numdam | MR 1125667 | Zbl 0756.14017

[4] Beauville, A. Conformal blocks, Fusion rings and the Verlinde formula, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993) (Israel Math. Conf. Proc.) Tome 9 (1996), pp. 75-96 | MR 1360497 | Zbl 0848.17024

[5] Beauville, A.; Laszlo, Y.; Sorger, C. The Picard group of the moduli of G-bundles on a curve, Compositio Math., Tome 112 (1998) no. 2, pp. 183-216 | Article | MR 1626025 | Zbl 0976.14024

[6] Beauville, A.; Narasimhan, M.S.; Ramanan, S. Spectral curves and the generalised theta divisor, J. Reine Angew. Math., Tome 398 (1989), pp. 169-179 | Article | MR 998478 | Zbl 0666.14015

[7] Bourbaki, N. Groupes et algèbres de Lie. Chap. VI, Hermann, Paris (1968) | MR 240238 | Zbl 0483.22001

[8] Drezet, J.-M.; Narasimhan, M.S. Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques, Invent. Math., Tome 97 (1989) no. 1, pp. 53-94 | Article | MR 999313 | Zbl 0689.14012

[9] Dynkin, E. Semisimple subalgebras of semisimple Lie algebras, Amer. Math. Soc. Translations (II), Tome 6 (1957), pp. 111-244 | Zbl 0077.03404

[10] Kumar, S.; Narasimhan, M.S. Picard group of the moduli spaces of G-bundles, Math. Ann., Tome 308 (1997) no. 1, pp. 155-173 | Article | MR 1446205 | Zbl 0884.14004

[11] Laszlo, Y. À propos de l’espace des modules de fibrés de rang 2 sur une courbe, Math. Ann., Tome 299 (1994) no. 4, pp. 597-608 | Article | MR 1286886 | Zbl 0846.14011

[12] Laszlo, Y.; Sorger, C. The line bundles on the moduli of parabolic G-bundles over curves and their sections, Ann. Sci. École Norm. Sup. (4), Tome 30 (1997) no. 4, pp. 499-525 | Numdam | MR 1456243 | Zbl 0918.14004

[13] Mumford, D. On the equations defining abelian varieties, I, Invent. Math., Tome 1 (1966), pp. 287-354 | Article | MR 204427 | Zbl 0219.14024

[14] Mumford, D. Varieties defined by quadratic equations, Questions on Algebraic Varieties (C.I.M.E., III Ciclo, Varenna, 1969), Edizioni Cremonese, Rome (1970), pp. 29-100 | MR 282975 | Zbl 0198.25801

[15] Oxbury, W.; Wilson, S. Reciprocity laws in the Verlinde formulae for the classical groups, Trans. Amer. Math. Soc., Tome 348 (1996) no. 7, pp. 2689-2710 | Article | MR 1340183 | Zbl 0902.14031

[16] Ramanan, S. Orthogonal and spin bundles over hyperelliptic curves, Proc. Indian Acad. Sci. Math. Sci., Tome 90 (1981) no. 2, pp. 151-166 | Article | MR 653952 | Zbl 0512.14018

[17] Serre, J.-P. Revêtements à ramification impaire et thêta-caractéristiques, C. R. Acad. Sci. Paris Sér. I Math., Tome 311 (1990) no. 9, pp. 547-552 | MR 1078120 | Zbl 0742.14030

[18] Sorger, C. On moduli of G-bundles of a curve for exceptional G, Ann. Sci. École Norm. Sup. (4), Tome 32 (1999) no. 1, pp. 127-133 | Numdam | MR 1670528 | Zbl 0969.14016