Soient l’espace des modules des fibrés -principaux sur une courbe , et le fibré déterminant sur . Nous définissons un isomorphisme de sur le dual de l’espace des fonctions thêta du -ième ordre sur la Jacobienne de . Cet isomorphisme identifie l’application rationnelle définie par le système linéaire avec l’application qui associe à un fibré quadratique le diviseur thêta . Les deux composantes et de sont envoyées sur les sous-espaces de fonctions paires et impaires respectivement. Finalement nous discutons le problème analogue pour les fibrés symplectiques.
Let be the moduli space of principal -bundles on a curve , and the determinant bundle on . We define an isomorphism of onto the dual of the space of -th order theta functions on the Jacobian of . This isomorphism identifies the rational map defined by the linear system with the map which associates to a quadratic bundle the theta divisor . The two components and of are mapped into the subspaces of even and odd theta functions respectively. Finally we discuss the analogous question for -bundles.
@article{AIF_2006__56_5_1405_0, author = {Beauville, Arnaud}, title = {Orthogonal bundles on curves and theta functions}, journal = {Annales de l'Institut Fourier}, volume = {56}, year = {2006}, pages = {1405-1418}, doi = {10.5802/aif.2216}, zbl = {1114.14021}, mrnumber = {2273860}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2006__56_5_1405_0} }
Beauville, Arnaud. Orthogonal bundles on curves and theta functions. Annales de l'Institut Fourier, Tome 56 (2006) pp. 1405-1418. doi : 10.5802/aif.2216. http://gdmltest.u-ga.fr/item/AIF_2006__56_5_1405_0/
[1] Formulas of Verlinde type for non-simply connected groups (Preprint, math.SG/0005047) | MR 1959587
[2] Vector bundles on curves and theta functions (Preprint, math.AG/0502179, Proc. of the conf. "Moduli spaces and arithmetic geometry" (Kyoto, 2004). Advanced studies in pure math, to appear)
[3] Fibrés de rang sur les courbes, fibré déterminant et fonctions thêta II, Bull. Soc. Math. France, Tome 119 (1991) no. 3, pp. 259-291 | Numdam | MR 1125667 | Zbl 0756.14017
[4] Conformal blocks, Fusion rings and the Verlinde formula, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993) (Israel Math. Conf. Proc.) Tome 9 (1996), pp. 75-96 | MR 1360497 | Zbl 0848.17024
[5] The Picard group of the moduli of -bundles on a curve, Compositio Math., Tome 112 (1998) no. 2, pp. 183-216 | Article | MR 1626025 | Zbl 0976.14024
[6] Spectral curves and the generalised theta divisor, J. Reine Angew. Math., Tome 398 (1989), pp. 169-179 | Article | MR 998478 | Zbl 0666.14015
[7] Groupes et algèbres de Lie. Chap. VI, Hermann, Paris (1968) | MR 240238 | Zbl 0483.22001
[8] Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques, Invent. Math., Tome 97 (1989) no. 1, pp. 53-94 | Article | MR 999313 | Zbl 0689.14012
[9] Semisimple subalgebras of semisimple Lie algebras, Amer. Math. Soc. Translations (II), Tome 6 (1957), pp. 111-244 | Zbl 0077.03404
[10] Picard group of the moduli spaces of -bundles, Math. Ann., Tome 308 (1997) no. 1, pp. 155-173 | Article | MR 1446205 | Zbl 0884.14004
[11] À propos de l’espace des modules de fibrés de rang 2 sur une courbe, Math. Ann., Tome 299 (1994) no. 4, pp. 597-608 | Article | MR 1286886 | Zbl 0846.14011
[12] The line bundles on the moduli of parabolic -bundles over curves and their sections, Ann. Sci. École Norm. Sup. (4), Tome 30 (1997) no. 4, pp. 499-525 | Numdam | MR 1456243 | Zbl 0918.14004
[13] On the equations defining abelian varieties, I, Invent. Math., Tome 1 (1966), pp. 287-354 | Article | MR 204427 | Zbl 0219.14024
[14] Varieties defined by quadratic equations, Questions on Algebraic Varieties (C.I.M.E., III Ciclo, Varenna, 1969), Edizioni Cremonese, Rome (1970), pp. 29-100 | MR 282975 | Zbl 0198.25801
[15] Reciprocity laws in the Verlinde formulae for the classical groups, Trans. Amer. Math. Soc., Tome 348 (1996) no. 7, pp. 2689-2710 | Article | MR 1340183 | Zbl 0902.14031
[16] Orthogonal and spin bundles over hyperelliptic curves, Proc. Indian Acad. Sci. Math. Sci., Tome 90 (1981) no. 2, pp. 151-166 | Article | MR 653952 | Zbl 0512.14018
[17] Revêtements à ramification impaire et thêta-caractéristiques, C. R. Acad. Sci. Paris Sér. I Math., Tome 311 (1990) no. 9, pp. 547-552 | MR 1078120 | Zbl 0742.14030
[18] On moduli of -bundles of a curve for exceptional , Ann. Sci. École Norm. Sup. (4), Tome 32 (1999) no. 1, pp. 127-133 | Numdam | MR 1670528 | Zbl 0969.14016