Puiseux series polynomial dynamics and iteration of complex cubic polynomials
[Dynamique polynomiale des séries de Puiseux]
Kiwi, Jan
Annales de l'Institut Fourier, Tome 56 (2006), p. 1337-1404 / Harvested from Numdam

Nous considérons la complétion 𝕃 du corps des séries formelles de Puiseux et nous étudions les polynômes à coefficients dans 𝕃 en tant que systèmes dynamiques. Nous donnons une description complète de l’espace dynamique et l’espace des paramètres des polynômes cubiques à coefficients dans 𝕃. Nous démontrons que la dynamique cubique sur 𝕃 et sur sont intimement liées. Plus précisement, nous montrons que certains éléments de 𝕃 correspondent de manière naturelle à des séries de Fourier de fonctions analytiques presque périodiques (au sens de Bohr) qui paramétrisent (à l’infini) les classes quasi-conformes des polynômes complexes cubiques non renormalisables. Nos techniques s’appuient sur des idées introduites par Branner et Hubbard pour l’étude des polynômes cubiques complexes.

We let 𝕃 be the completion of the field of formal Puiseux series and study polynomials with coefficients in 𝕃 as dynamical systems. We give a complete description of the dynamical and parameter space of cubic polynomials in 𝕃[ζ]. We show that cubic polynomial dynamics over 𝕃 and are intimately related. More precisely, we establish that some elements of 𝕃 naturally correspond to the Fourier series of analytic almost periodic functions (in the sense of Bohr) which parametrize (near infinity) the quasiconformal classes of non-renormalizable complex cubic polynomials. Our techniques are based on the ideas introduced by Branner and Hubbard to study complex cubic polynomials.

Publié le : 2006-01-01
DOI : https://doi.org/10.5802/aif.2215
Classification:  37F45,  12J25,  32S99
Mots clés: Séries de Puiseux, ensemble des Julia
@article{AIF_2006__56_5_1337_0,
     author = {Kiwi, Jan},
     title = {Puiseux series polynomial dynamics and iteration of complex cubic polynomials},
     journal = {Annales de l'Institut Fourier},
     volume = {56},
     year = {2006},
     pages = {1337-1404},
     doi = {10.5802/aif.2215},
     zbl = {1110.37036},
     mrnumber = {2273859},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2006__56_5_1337_0}
}
Kiwi, Jan. Puiseux series polynomial dynamics and iteration of complex cubic polynomials. Annales de l'Institut Fourier, Tome 56 (2006) pp. 1337-1404. doi : 10.5802/aif.2215. http://gdmltest.u-ga.fr/item/AIF_2006__56_5_1337_0/

[1] Ahlfors, L. Lectures on quasiconformal mappings, Van Nostrand, Princeton (1966) | MR 200442 | Zbl 0138.06002

[2] Baker, M.; Rumely, R. Equidistribution of Small Points, Rational Dynamics, and Potential Theory (to appear in Ann. Inst. Fourier) | Numdam

[3] Benedetto, R.-L. Wandering Domains and Nontrivial Reduction in Non-Archimedean Dynamics (to appear) | MR 2157374 | Zbl 02212233

[4] Benedetto, R.-L. Hyperbolic maps in p-adic dynamics, Ergodic Theory and Dynamical Systems, Tome 21 (2001) no. 1, pp. 1-11 | Article | MR 1826658 | Zbl 0972.37027

[5] Benedetto, R.-L. Examples of wandering domains in p-adic polynomial dynamics, C. R. Math. Acad. Sci. Paris, Tome 7 (2002) no. 335, pp. 615-620 | MR 1941304 | Zbl 01850790

[6] Besicovitch, A.-S. Almost periodic functions, Dover (1954) | MR 68029 | Zbl 0065.07102

[7] Bézivin, J.-P. Sur la compacité des ensembles de Julia des polynômes p–adiques, Math. Z. (2004) no. 246, pp. 273-289 | Article | MR 2031456 | Zbl 1047.37031

[8] Blanchard, P. Complex analytic dynamics on the Riemann sphere, Bull. Amer. Math. Soc., Tome 11 (1984) no. 1, pp. 85-141 | Article | MR 741725 | Zbl 0558.58017

[9] Branner, B. Cubic polynomials: turning around the connectedness locus, Publish or Perish (1993), pp. 391-427 | MR 1215972 | Zbl 0801.58024

[10] Branner, B.; Hubbard, J. H. The iteration of cubic polynomials. Part I: The global topology of parameter space, Acta math., Tome 160 (1988), pp. 143-206 | Article | MR 945011 | Zbl 0668.30008

[11] Branner, B.; Hubbard, J. H. The iteration of cubic polynomials. Part II: Patterns and parapatterns, Acta math., Tome 169 (1992) no. 3-4, pp. 229-325 | Article | MR 1194004 | Zbl 0812.30008

[12] Brieskorn, E.; Knörrer, H. Plane algebraic curves, Birkhäuser Verlag, Basel (1986) | MR 886476 | Zbl 0588.14019

[13] Casas-Alvero, E. Singularities of plane curves, LMS Lecture Notes Series, Cambridge University Press, Tome 276 (2000) | MR 1782072 | Zbl 0967.14018

[14] Cassels, J.W.S. Local fields, LMS student texts, Cambridge University Press, Tome 3 (1986) | MR 861410 | Zbl 0595.12006

[15] Escassut, A. Analytic elements in p-adic analysis, World Scientific (1995) | MR 1370442 | Zbl 0933.30030

[16] Escassut, A. Ultrametric Banach Algebras, World Scientific (2003) | MR 1978961 | Zbl 1026.46067

[17] Favre, C.; Rivera Letelier, J. Théorème d’équidistribution de Brolin en dynamique p-adique, C. R. Math. Acad. Sci. Paris, Tome 4 (2004) no. 339, pp. 271-276 | MR 2092012 | Zbl 1052.37039

[18] Fernandez, G. Componentes de Fatou errantes en dinámica p-ádica, Chile, PUC (2004) (Masters thesis)

[19] Gelfand, S. Generalized Functions, Academic Press Tome 1 (1964) | Zbl 0115.33101

[20] Harris, D. Turning curves for critically recurrent cubic polynomials, Nonlinearity, Tome 12 (1999) no. 2, pp. 411-418 | Article | MR 1677771 | Zbl 0963.37040

[21] Katnelzon, Y. An introduction to harmonic analysis, Dover (1976) | Zbl 0352.43001

[22] Mcmullen, C.-T. Complex Dynamics and Renormalization, Princeton University Press, Annals of Math. Studies (1994) no. 135 | MR 1312365 | Zbl 0822.30002

[23] Milnor, J. On cubic polynomials with periodic critical points (1991) (Unpublished)

[24] Milnor, J. Dynamics in one complex variable, Vieweg (1999) | MR 1721240 | Zbl 0946.30013

[25] Milnor, J. Local connectivity of Julia sets: expository lectures, The Mandelbrot set, theme and variations, Cambridge Univ. Press (2000) no. 274, pp. 67-116 | MR 1765085 | Zbl 1107.37305 | Zbl 02096494

[26] Rees, M. Views of parameter space: topographer and resident, Astérique (2003) no. 288, pp. vi+418 | MR 2033172 | Zbl 1054.37020

[27] Rivera Letelier, J. Points périodiques des fonctions rationelles dans l’espace hyperbolique p-adique (Preprint) | Zbl 02205608

[28] Rivera Letelier, J. Wild recurrent critical points (arxiv.org/math.DS/0406417) | Zbl 1130.37378 | Zbl 02228487

[29] Rivera Letelier, J. Dynamique de fractions rationnelles sur des corps locaux, Orsay, U. de Paris-Sud (2000) (Ph. D. Thesis)

[30] Rivera Letelier, J. Dynamique des fonctions rationnelles sur des corps locaux, Geometric methods in dynamics. II, Astérisque (2003) no. 287, pp. 147-230 | MR 2040006 | Zbl 1140.37336 | Zbl 02066305

[31] Rivera Letelier, J. Espace hyperbolique p-adique et dynamique des fonctions rationnelles, Compositio Math., Tome 138 (2003) no. 2, pp. 199-231 | Article | MR 2018827 | Zbl 1041.37021