Sets of k-recurrence but not (k+1)-recurrence
[Ensembles de k-récurrence mais pas de k+1-récurrence]
Frantzikinakis, Nikos ; Lesigne, Emmanuel ; Wierdl, Máté
Annales de l'Institut Fourier, Tome 56 (2006), p. 839-849 / Harvested from Numdam

Pour tout nombre entier k>0, nous construisons un ensemble d’entiers qui est un ensemble de récurrence multiple à l’ordre k mais pas à l’ordre k+1. Cela étend une construction de Furstenberg qui a construit un ensemble de récurrence qui n’est pas un ensemble de 2-récurrence. Nous obtenons un résultat similaire pour la convergence des moyennes ergodiques multiples. Comme conséquence de notre construction, nous exhibons aussi un résultat combinatoire relié au théorème de Szemerédi.

For every k, we produce a set of integers which is k-recurrent but not (k+1)-recurrent. This extends a result of Furstenberg who produced a 1-recurrent set which is not 2-recurrent. We discuss a similar result for convergence of multiple ergodic averages. We also point out a combinatorial consequence related to Szemerédi’s theorem.

Publié le : 2006-01-01
DOI : https://doi.org/10.5802/aif.2202
Classification:  38A,  11B
Mots clés: théorie ergodique, récurrence, récurrence multiple, combinatoire additive des nombres
@article{AIF_2006__56_4_839_0,
     author = {Frantzikinakis, Nikos and Lesigne, Emmanuel and Wierdl, M\'at\'e},
     title = {Sets of $k$-recurrence but not $(k+1)$-recurrence},
     journal = {Annales de l'Institut Fourier},
     volume = {56},
     year = {2006},
     pages = {839-849},
     doi = {10.5802/aif.2202},
     zbl = {1123.37001},
     mrnumber = {2266880},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2006__56_4_839_0}
}
Frantzikinakis, Nikos; Lesigne, Emmanuel; Wierdl, Máté. Sets of $k$-recurrence but not $(k+1)$-recurrence. Annales de l'Institut Fourier, Tome 56 (2006) pp. 839-849. doi : 10.5802/aif.2202. http://gdmltest.u-ga.fr/item/AIF_2006__56_4_839_0/

[1] Bergelson, V. Weakly mixing PET, Ergodic Theory Dynamical Systems, Tome 7 (1987) no. 3, pp. 337-349 | MR 912373 | Zbl 0645.28012

[2] Bergelson, V. Ergodic Ramsey theory-an update, Ergodic Theroy of d -actions, Cambridge University Press, Cambridge (1996), pp. 1-61 | MR 1411215 | Zbl 0846.05095

[3] Furstenberg, H. Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math., Tome 71 (1977), pp. 204-256 | Article | MR 498471 | Zbl 0347.28016

[4] Furstenberg, H. Recurrence in ergodic theory and combinatorial number theory, Princeton University Press, Princeton, N.J. (1981) (M. B. Porter Lectures) | MR 603625 | Zbl 0459.28023

[5] Furstenberg, H.; Katznelson, Y. An ergodic Szemerédi theorem for commuting transformations, J. Analyse Math., Tome 34 (1979), pp. 275-291 | Article | MR 531279 | Zbl 0426.28014

[6] Furstenberg, H.; Katznelson, Y.; Ornstein, D. The ergodic theoretical proof of Szemerédi’s theorem, Bull. Amer. Math. Soc. (N.S.), Tome 7 (1982) no. 3, pp. 527-552 | Article | MR 670131 | Zbl 0523.28017

[7] Host, B.; Kra, B. Nonconventional ergodic averages and nilmanifolds, Annals of Math, Tome 161 (2005) no. 1, pp. 397-488 | Article | MR 2150389 | Zbl 1077.37002

[8] Katznelson, Y. Chromatic numbers of Cayley graphs on and recurrence, Combinatorica, Tome 21 (2001) no. 2, pp. 211-219 (Paul Erdős and his mathematics (Budapest, 1999)) | Article | MR 1832446 | Zbl 0981.05038

[9] Ziegler, Tamar Universal Characteristic Factors and Furstenberg Averages, http://www.arxiv.org/abs/math.DS/0403212 (To appear in Journal of the AMS)