Cet article confirme une conséquence de la conjecture principale de la théorie d’Iwasawa non abélienne. On démontre que, sous une condition technique, les groupes de cohomologie étale , où est un schéma projectif lisse, sont engendrés par des unités tordues compatible par rapport aux normes dans une tour de corps de nombres associés à . On établit un résultat similaire pour la cohomologie motivique à coefficients finis en utilisant la conjecture de Bloch-Kato.
This article confirms a consequence of the non-abelian Iwasawa main conjecture. It is proved that under a technical condition the étale cohomology groups , where is a smooth, projective scheme, are generated by twists of norm compatible units in a tower of number fields associated to . Using the “Bloch-Kato-conjecture” a similar result is proven for motivic cohomology with finite coefficients.
@article{AIF_2006__56_4_1257_0, author = {Hornbostel, Jens and Kings, Guido}, title = {On non-commutative twisting in \'etale and motivic cohomology}, journal = {Annales de l'Institut Fourier}, volume = {56}, year = {2006}, pages = {1257-1279}, doi = {10.5802/aif.2212}, zbl = {pre05145722}, mrnumber = {2266890}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2006__56_4_1257_0} }
Hornbostel, Jens; Kings, Guido. On non-commutative twisting in étale and motivic cohomology. Annales de l'Institut Fourier, Tome 56 (2006) pp. 1257-1279. doi : 10.5802/aif.2212. http://gdmltest.u-ga.fr/item/AIF_2006__56_4_1257_0/
[1] Théorie des topos et cohomologie étale des schémas, t.3, Lect. Notes. Math., Springer, Tome 305 (1973) | MR 354654
[2] -functions and Tamagawa numbers of motives, “The Grothendieck Festschrift”, Vol.I, Progress in Math., Birkhäuser, Boston, Tome 86 (1990), pp. 333-400 | MR 1086888 | Zbl 0768.14001
[3] Fine Selmer groups of elliptic curves over -adic Lie extensions, Math. Annalen, Tome 331 (2005), pp. 809-839 | Article | MR 2148798 | Zbl 02156246
[4] Algebraic and étale -theory, Trans. Amer. Math. Soc., Tome 292 (1985), pp. 247-280 | MR 805962 | Zbl 0581.14012
[5] Cohomologie galoisienne et valeurs des fontions , Proceedings of Symposia in Pure Mathematics, part I, Tome 55 (1994), pp. 599-706 | MR 1265546 | Zbl 0821.14013
[6] Motivic Cohomology over Dedekind rings, Math. Z., Tome 248 (2004), pp. 773-794 | Article | MR 2103541 | Zbl 1062.14025
[7] The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky, J. reine angew. Math., Tome 530 (2001), pp. 55-103 | Article | MR 1807268 | Zbl 1023.14003
[8] Riemann-Roch theorems for higher algebraic -theory, Adv. in Math., Tome 40 (1981), pp. 203-289 | Article | MR 624666 | Zbl 0478.14010
[9] Degeneration of -adic Eisenstein classes and of the elliptic polylog, Invent. Math., Tome 135 (1999), pp. 545-594 | Article | MR 1669288 | Zbl 0955.11027
[10] Equivariant Bloch-Kato conjecture and non-abelian Iwasawa main conjecture, Proceedings ICM, Tome II (2002), pp. 149-162 | MR 1957029 | Zbl 1020.11067
[11] Classical motivic polylogarithm according to Beilinson and Deligne, Doc. Math., Tome 3 (1998), pp. 27-133 | MR 1643974 | Zbl 0906.19004
[12] On the -adic cohomology of varieties over number fields and its Galois cohomology, Galois groups over , MSRI Publication (1989) | Zbl 0703.14010
[13] -theory of semi-local rings with finite coefficients and étale cohomology, K-Theory, Tome 25 (2002), pp. 99-138 | Article | MR 1906669 | Zbl 1013.19001
[14] Iwasawa theory and -adic Hodge theory, Kodai Math. J., Tome 16 (1993), pp. 1-31 | Article | MR 1207986 | Zbl 0798.11050
[15] -adic Hodge theory and values of zeta functions of modular forms. Cohomologies -adiques et applications arithmétiques III, Astérisque, Soc. Math. Fr., Tome 295 (2004), pp. 117-290 | MR 2104361 | Zbl 02123616
[16] The Tamagawa number conjecture for CM elliptic curves, Invent. Math., Tome 143 (2001), pp. 571-627 | Article | MR 1817645 | Zbl 01586347
[17] Groupes analytiques -adiques, Pub. Math. IHÉS, Tome 26 (1965), pp. 389-603 | Numdam | MR 209286 | Zbl 0139.02302
[18] -theory and motivic cohomology of schemes (http://www.math.uiuc.edu/K-theory/336)
[19] A cup product in the Galois cohomology of number fields, Duke Math. J., Tome 120 (2004), pp. 269-310 | MR 2019977 | Zbl 1047.11106
[20] Étale Cohomology, Princeton University Press (1980) | MR 559531 | Zbl 0433.14012
[21] -homotopy theory of schemes, Pub. Math. IHÉS, Tome 90 (1999), pp. 45-143 | Numdam | MR 1813224 | Zbl 0983.14007
[22] Cohomology of Number Fields, Grundlehren der math. Wiss., Springer, Tome 323 (2000) | MR 1737196 | Zbl 0948.11001
[23] -adic -functions and -adic representations, SMF/AMS Texts and Monographs, American Mathematical Society, Providence, RI; Société Mathématique de France, Paris, Tome 3 (2000) | MR 1743508 | Zbl 0988.11055
[24] Finite generation of the groups of algebraic integers, Springer, LNM, Tome 341 (1973) | MR 349812 | Zbl 0355.18018
[25] Cohomologie galoisienne, Springer, Lecture Notes in Math., Tome 5 e éd. (1994) | MR 1324577 | Zbl 0812.12002
[26] -théorie des anneaux d’entiers de corps de nombres et cohomologie étale, Invent. Math., Tome 55 (1979), pp. 251-295 | Article | MR 553999 | Zbl 0437.12008
[27] Operations on étale -theory. Applications, Lecture Notes in Math., Springer, Tome 966 (1982), pp. 271-303 | MR 689380 | Zbl 0507.14013
[28] Opérations en K-théorie algébrique, Canad. J.Math., Tome 37 (1985), pp. 488-550 | Article | MR 787114 | Zbl 0575.14015
[29] -adic -theory of elliptic curves, Duke, Tome 54 (1987), pp. 249-269 | Article | MR 885785 | Zbl 0627.14010
[30] Higher Chow Groups and Étale Cohomology, Cycles, Transfers and Motivic Homology Theories, Annals of Math. Studies, Princeton University Press, Tome 143 (2000) | MR 1764203 | Zbl 1019.14001
[31] Relative cycles and Chow sheaves, Cycles, Transfers and Motivic Homology Theories, Annals of Math. Studies, Princeton University Press, Tome 143 (2000) | MR 1764199 | Zbl 1019.14004
[32] Algebraic K-theory and étale cohomology, Ann. Sci. École Norm. Sup., Tome 13 (1985), pp. 437-552 | Numdam | MR 826102 | Zbl 0596.14012
[33] Bott stability in Algebraic -theory, in “Applications of Algebraic -theory”, Contemp. Math., Tome 55 (1986), pp. 389-406 | MR 862644 | Zbl 0594.18012
[34] Motivic cohomology with -coefficients (http://www.math.uiuc.edu/K-theory/639) | Numdam | Zbl 1057.14028
[35] Motivic cohomology groups are isomorphic to higher Chow groups in any characteristic, Int. Math. Res. Not. (2002), pp. 351-355 | Article | MR 1883180 | Zbl 1057.14026
[36] An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, Cambridge, Tome 38 (1994) | MR 1269324 | Zbl 0797.18001