Soient un corps de nombres et un polynôme irréductible sur . À partir de la géométrie algébrique et de la théorie des groupes, nous donnons des conditions suffisantes pour que l’ensemble -exceptionnel de , c’est-à-dire l’ensemble des éléments de tels que est réductible sur , soit fini. Nos méthodes nous permettent alors de développer trois applications. Tout d’abord, nous obtenons que pour tout entier plus grand que , à l’exception d’un nombre fini de cas, la -spécialisation du polynôme de Laguerre généralisé de degré est -irréductible et a pour groupe de Galois . Ensuite, nous étudions les spécialisations du polynôme modulaire (celui-ci s’annule en les -invariants des paires de courbes elliptiques reliées entre elles par une -isogénie cyclique). Nous montrons que pour tout , à l’exception d’un nombre fini de cas, les -specialisations de sont -irréductibles et ont un groupe de Galois contenant . Enfin, nous obtenons que pour un revêtement simple de degré et de genre au moins , à l’exception d’un nombre fini de cas, les -spécialisations de sont -irréductibles et ont pour groupe de Galois .
Let be a number field, and suppose is irreducible over . Using algebraic geometry and group theory, we describe conditions under which the -exceptional set of , i.e. the set of for which the specialized polynomial is -reducible, is finite. We give three applications of the methods we develop. First, we show that for any fixed , all but finitely many -specializations of the degree generalized Laguerre polynomial are -irreducible and have Galois group . Second, we study specializations of the modular polynomial (which vanishes on the -invariants of pairs of elliptic curves related by a cyclic -isogeny), and show that for any , all but finitely many of the -specializations of are -irreducible and have Galois group containing . Third, for a simple branched cover of degree and of genus at least , all but finitely many -specializations are -irreducible and have Galois group .
@article{AIF_2006__56_4_1127_0, author = {Hajir, Farshid and Wong, Siman}, title = {Specializations of one-parameter families of polynomials}, journal = {Annales de l'Institut Fourier}, volume = {56}, year = {2006}, pages = {1127-1163}, doi = {10.5802/aif.2208}, zbl = {1160.12004}, mrnumber = {2266886}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2006__56_4_1127_0} }
Hajir, Farshid; Wong, Siman. Specializations of one-parameter families of polynomials. Annales de l'Institut Fourier, Tome 56 (2006) pp. 1127-1163. doi : 10.5802/aif.2208. http://gdmltest.u-ga.fr/item/AIF_2006__56_4_1127_0/
[1] The gamma function, Holt, Rinehart and Winston (1964) | MR 165148 | Zbl 0144.06802
[2] The transitive subgroups of degree up to eleven, Comm. in Algebra, Tome 11 (1983), pp. 863-911 | Article | MR 695893 | Zbl 0518.20003
[3] Atlas of finite groups : maximal subgroups and ordinary characters for simple groups, Oxford (1985) | MR 827219 | Zbl 0568.20001
[4] Primes of the form , Wiley (1989) | MR 1028322 | Zbl 0701.11001
[5] Congruence subgroups of of genus less than or equal to , Exper. Math., Tome 12 (2003), pp. 243-255 | MR 2016709 | Zbl 1060.11021
[6] Integral specialization of families of rational functions, Pacific J. Math., Tome 190 (1999), pp. 45-85 | Article | MR 1722766 | Zbl 1016.12002
[7] The genus of subfields of , Proc. AMS, Tome 51 (1975), pp. 282-288 | MR 384698 | Zbl 0313.10022
[8] Permutation groups, Springer-Verlag (1996) | MR 1409812 | Zbl 0951.20001
[9] Solving solvable quintics, Math. Comp., Tome 57 (1991), pp. 387-401 | Article | MR 1079014 | Zbl 0729.12008
[10] and are Galois groups over number fields, J. Algebra, Tome 104 (1986), pp. 231-260 | Article | MR 866773 | Zbl 0609.12005
[11] On the irreducibility of the generalized Laguerre polynomials, Acta Arith., Tome 105 (2002), pp. 177-182 | Article | MR 1932764 | Zbl 1010.12001
[12] The irreducibility of the Bessel polynomials, J. reine angew. Math., Tome 550 (2002), pp. 125-140 | Article | MR 1925910 | Zbl 1022.11053
[13] On Hilbert’s irreducibility theorem, J. Number Theory, Tome 6 (1974), pp. 211-231 | Article | MR 349624 | Zbl 0299.12002
[14] Hurwitz schemes and irreducibility of moduli of algebraic curves, Ann. Math., Tome 90 (1969), pp. 542-575 | Article | MR 260752 | Zbl 0194.21901
[15] Some generalized Laguerre polynomials whose Galois groups are the alternating groups, J. Number Theory, Tome 31 (1989), pp. 201-207 | Article | MR 987573 | Zbl 0693.12009
[16] Algebraic properties of a family of generalized Laguerre polynomials (Preprint, 17 p)
[17] Some -extensions obtained from generalized Laguerre polynomials, J. Number Theory, Tome 50 (1995), pp. 206-212 | Article | MR 1316816 | Zbl 0829.12004
[18] The theory of groups, Macmillan (1959) | MR 103215 | Zbl 0084.02202
[19] Finite groups III, Springer-Verlag (1982) | MR 662826 | Zbl 0514.20002
[20] Congruence subgroups of positive genus of the modular group, Ill. J. Math., Tome 9 (1965), pp. 577-583 | MR 181675 | Zbl 0138.31701
[21] Fundamentals of Diophantine Geometry, Springer-Verlag (1983) | MR 715605 | Zbl 0528.14013
[22] Elliptic functions, 2nd ed, Springer-Verlag (1987) | MR 890960 | Zbl 0615.14018
[23] Minimal degrees of primitive permutation groups, with an application to monodromy groups of covers of Riemann surfaces, Proc. London Math. Soc., Tome 63 (1991), pp. 266-314 | Article | MR 1114511 | Zbl 0696.20004
[24] Extensions of the rationals with Galois group , Bull. London Math. Soc., Tome 1 (1969), pp. 332-338 | Article | MR 258801 | Zbl 0184.07603
[25] Finiteness results for Hilbert’s irreducibility theorem, Ann. Inst. Fourier, Tome 52 (2002), pp. 983-1015 | Article | Numdam | MR 1926669 | Zbl 1014.12002
[26] Number theory in function fields, Springer-Verlag (2002) | MR 1876657 | Zbl 1043.11079
[27] Einige Sätze über Primzahlen mit Anwendungen auf Irreduzibilitätsfragen. II, Sitzungsberichte der Berliner Akademie (1929), pp. 370-391
[28] Gleichungen ohne Affekt, Sitzungsberichte der Berliner Akademie (1930), pp. 443-449
[29] Affektlose Gleichungen in der Theorie der Laguerreschen und Hermiteschen Polynome, J. reine angew. Math., Tome 165 (1931), pp. 52-58 | Article | Zbl 0002.11501
[30] On a family of generalized Laguerre polynomials (To appear in J. Number Theory, 13 p) | MR 2072388 | Zbl 1053.11083
[31] Lectures on the Mordell-Weil theorem, 2nd ed, Vieweg (1990) | MR 1002324 | Zbl 0676.14005
[32] Topics in Galois theory, Jones and Bartlett Publ. (1992) | MR 1162313 | Zbl 0746.12001
[33] The arithmetic of elliptic curves, Springer-Verlag (1986) | MR 817210 | Zbl 0585.14026
[34] Groups as Galois groups : an introduction, Cambridge University Press (1996) | MR 1405612 | Zbl 0868.12003
[35] Finite permutation groups, Academic Press (1964) | MR 183775 | Zbl 0138.02501