Specializations of one-parameter families of polynomials
[Spécialisation des familles à un paramètre de polynômes]
Hajir, Farshid ; Wong, Siman
Annales de l'Institut Fourier, Tome 56 (2006), p. 1127-1163 / Harvested from Numdam

Soient K un corps de nombres et λ(x,t)K[x,t] un polynôme irréductible sur K(t). À partir de la géométrie algébrique et de la théorie des groupes, nous donnons des conditions suffisantes pour que l’ensemble K-exceptionnel de λ, c’est-à-dire l’ensemble des éléments α de K tels que λ(x,α) est réductible sur K, soit fini. Nos méthodes nous permettent alors de développer trois applications. Tout d’abord, nous obtenons que pour tout entier n plus grand que 10, à l’exception d’un nombre fini de cas, la K-spécialisation du polynôme de Laguerre généralisé L n (t) (x) de degré n est K-irréductible et a pour groupe de Galois S n . Ensuite, nous étudions les spécialisations du polynôme modulaire Φ n (x,t) (celui-ci s’annule en les j-invariants des paires de courbes elliptiques reliées entre elles par une n-isogénie cyclique). Nous montrons que pour tout n53, à l’exception d’un nombre fini de cas, les K-specialisations de Φ n (x,t) sont K-irréductibles et ont un groupe de Galois contenant SL 2 (/n)/{±I}. Enfin, nous obtenons que pour un revêtement simple π:Y K 1 de degré n7 et de genre au moins 2, à l’exception d’un nombre fini de cas, les K-spécialisations de π sont K-irréductibles et ont pour groupe de Galois S n .

Let K be a number field, and suppose λ(x,t)K[x,t] is irreducible over K(t). Using algebraic geometry and group theory, we describe conditions under which the K-exceptional set of λ, i.e. the set of αK for which the specialized polynomial λ(x,α) is K-reducible, is finite. We give three applications of the methods we develop. First, we show that for any fixed n10, all but finitely many K-specializations of the degree n generalized Laguerre polynomial L n (t) (x) are K-irreducible and have Galois group S n . Second, we study specializations of the modular polynomial Φ n (x,t) (which vanishes on the j-invariants of pairs of elliptic curves related by a cyclic n-isogeny), and show that for any n53, all but finitely many of the K-specializations of Φ n (x,t) are K-irreducible and have Galois group containing SL 2 (/n)/{±I}. Third, for a simple branched cover π:Y K 1 of degree n7 and of genus at least 2, all but finitely many K-specializations are K-irreducible and have Galois group S n .

Publié le : 2006-01-01
DOI : https://doi.org/10.5802/aif.2208
Classification:  12H25,  11C08,  11G15,  11R09,  14H25,  33C45
Mots clés: revêtement ramifié, multiplication complexe, théorème d’irréductibilité d’Hilbert, équation modulaire, polynômes orthogonaux, point rationnel, formule de Riemann-Hurwitz, revêtement simple, spécialisation
@article{AIF_2006__56_4_1127_0,
     author = {Hajir, Farshid and Wong, Siman},
     title = {Specializations of one-parameter families of polynomials},
     journal = {Annales de l'Institut Fourier},
     volume = {56},
     year = {2006},
     pages = {1127-1163},
     doi = {10.5802/aif.2208},
     zbl = {1160.12004},
     mrnumber = {2266886},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2006__56_4_1127_0}
}
Hajir, Farshid; Wong, Siman. Specializations of one-parameter families of polynomials. Annales de l'Institut Fourier, Tome 56 (2006) pp. 1127-1163. doi : 10.5802/aif.2208. http://gdmltest.u-ga.fr/item/AIF_2006__56_4_1127_0/

[1] Artin, E. The gamma function, Holt, Rinehart and Winston (1964) | MR 165148 | Zbl 0144.06802

[2] Butler, G.; Mckay, J. The transitive subgroups of degree up to eleven, Comm. in Algebra, Tome 11 (1983), pp. 863-911 | Article | MR 695893 | Zbl 0518.20003

[3] Conway, J. H.; Curtis, R. T.; Norton, S. P.; Parker, R. A.; Wilson, R. A. Atlas of finite groups : maximal subgroups and ordinary characters for simple groups, Oxford (1985) | MR 827219 | Zbl 0568.20001

[4] Cox, D. Primes of the form x 2 +ny 2 , Wiley (1989) | MR 1028322 | Zbl 0701.11001

[5] Cummins, C. J.; Pauli, S. Congruence subgroups of PSL(2,) of genus less than or equal to 24, Exper. Math., Tome 12 (2003), pp. 243-255 | MR 2016709 | Zbl 1060.11021

[6] Dèbes, P.; Fried, M. D. Integral specialization of families of rational functions, Pacific J. Math., Tome 190 (1999), pp. 45-85 | Article | MR 1722766 | Zbl 1016.12002

[7] Dennin, Jr., J. B. The genus of subfields of K(n), Proc. AMS, Tome 51 (1975), pp. 282-288 | MR 384698 | Zbl 0313.10022

[8] Dixon, J. D.; Mortimer, B. Permutation groups, Springer-Verlag (1996) | MR 1409812 | Zbl 0951.20001

[9] Dummit, D. Solving solvable quintics, Math. Comp., Tome 57 (1991), pp. 387-401 | Article | MR 1079014 | Zbl 0729.12008

[10] Feit, W. A ˜ 5 and A ˜ 7 are Galois groups over number fields, J. Algebra, Tome 104 (1986), pp. 231-260 | Article | MR 866773 | Zbl 0609.12005

[11] Filaseta, M.; Lam, T. Y. On the irreducibility of the generalized Laguerre polynomials, Acta Arith., Tome 105 (2002), pp. 177-182 | Article | MR 1932764 | Zbl 1010.12001

[12] Filaseta, M.; Trifonov, O. The irreducibility of the Bessel polynomials, J. reine angew. Math., Tome 550 (2002), pp. 125-140 | Article | MR 1925910 | Zbl 1022.11053

[13] Fried, M. On Hilbert’s irreducibility theorem, J. Number Theory, Tome 6 (1974), pp. 211-231 | Article | MR 349624 | Zbl 0299.12002

[14] Fulton, W. Hurwitz schemes and irreducibility of moduli of algebraic curves, Ann. Math., Tome 90 (1969), pp. 542-575 | Article | MR 260752 | Zbl 0194.21901

[15] Gow, R. Some generalized Laguerre polynomials whose Galois groups are the alternating groups, J. Number Theory, Tome 31 (1989), pp. 201-207 | Article | MR 987573 | Zbl 0693.12009

[16] Hajir, F. Algebraic properties of a family of generalized Laguerre polynomials (Preprint, 17 p)

[17] Hajir, F. Some A ˜ n -extensions obtained from generalized Laguerre polynomials, J. Number Theory, Tome 50 (1995), pp. 206-212 | Article | MR 1316816 | Zbl 0829.12004

[18] Hall, M. The theory of groups, Macmillan (1959) | MR 103215 | Zbl 0084.02202

[19] Huppert, N.; Blackburn, N. Finite groups III, Springer-Verlag (1982) | MR 662826 | Zbl 0514.20002

[20] Knopp, M. I.; Newman, M. Congruence subgroups of positive genus of the modular group, Ill. J. Math., Tome 9 (1965), pp. 577-583 | MR 181675 | Zbl 0138.31701

[21] Lang, S. Fundamentals of Diophantine Geometry, Springer-Verlag (1983) | MR 715605 | Zbl 0528.14013

[22] Lang, S. Elliptic functions, 2nd ed, Springer-Verlag (1987) | MR 890960 | Zbl 0615.14018

[23] Liebeck, M. W.; Saxl, J. Minimal degrees of primitive permutation groups, with an application to monodromy groups of covers of Riemann surfaces, Proc. London Math. Soc., Tome 63 (1991), pp. 266-314 | Article | MR 1114511 | Zbl 0696.20004

[24] Macbeath, A. M. Extensions of the rationals with Galois group PGL(2, n ), Bull. London Math. Soc., Tome 1 (1969), pp. 332-338 | Article | MR 258801 | Zbl 0184.07603

[25] Müller, P. Finiteness results for Hilbert’s irreducibility theorem, Ann. Inst. Fourier, Tome 52 (2002), pp. 983-1015 | Article | Numdam | MR 1926669 | Zbl 1014.12002

[26] Rosen, M. Number theory in function fields, Springer-Verlag (2002) | MR 1876657 | Zbl 1043.11079

[27] Schur, I. Einige Sätze über Primzahlen mit Anwendungen auf Irreduzibilitätsfragen. II, Sitzungsberichte der Berliner Akademie (1929), pp. 370-391

[28] Schur, I. Gleichungen ohne Affekt, Sitzungsberichte der Berliner Akademie (1930), pp. 443-449

[29] Schur, I. Affektlose Gleichungen in der Theorie der Laguerreschen und Hermiteschen Polynome, J. reine angew. Math., Tome 165 (1931), pp. 52-58 | Article | Zbl 0002.11501

[30] Sell, E. On a family of generalized Laguerre polynomials (To appear in J. Number Theory, 13 p) | MR 2072388 | Zbl 1053.11083

[31] Serre, J.-P. Lectures on the Mordell-Weil theorem, 2nd ed, Vieweg (1990) | MR 1002324 | Zbl 0676.14005

[32] Serre, J.-P. Topics in Galois theory, Jones and Bartlett Publ. (1992) | MR 1162313 | Zbl 0746.12001

[33] Silverman, J. H. The arithmetic of elliptic curves, Springer-Verlag (1986) | MR 817210 | Zbl 0585.14026

[34] Volklein, H. Groups as Galois groups : an introduction, Cambridge University Press (1996) | MR 1405612 | Zbl 0868.12003

[35] Wielandt, H. Finite permutation groups, Academic Press (1964) | MR 183775 | Zbl 0138.02501