Soit une courbe elliptique modulaire définie sur un champ de nombres totalement réel et soit la forme propre associée. Ce papier présente un nouvelle méthode, inspirée par un récent travail de Bertolini et Darmon, pour contrôler le rang de sur des extensions convenables quadratiques imaginaires . En particulier, ce résultat peut être appliqué aux cas qui ne sont pas considérés dans le travail de Kolyvagin et Logachëv, i.e., quand est pair et n’est pas nouveau en aucun idéal premier.
Let be a modular elliptic curve defined over a totally real number field and let be its associated eigenform. This paper presents a new method, inspired by a recent work of Bertolini and Darmon, to control the rank of over suitable quadratic imaginary extensions . In particular, this argument can also be applied to the cases not covered by the work of Kolyvagin and Logachëv, that is, when is even and not new at any prime.
@article{AIF_2006__56_3_689_0, author = {Longo, Matteo}, title = {On the Birch and Swinnerton-Dyer conjecture for modular elliptic curves over totally real fields}, journal = {Annales de l'Institut Fourier}, volume = {56}, year = {2006}, pages = {689-733}, doi = {10.5802/aif.2197}, zbl = {1152.11028}, mrnumber = {2244227}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2006__56_3_689_0} }
Longo, Matteo. On the Birch and Swinnerton-Dyer conjecture for modular elliptic curves over totally real fields. Annales de l'Institut Fourier, Tome 56 (2006) pp. 689-733. doi : 10.5802/aif.2197. http://gdmltest.u-ga.fr/item/AIF_2006__56_3_689_0/
[1] Heegner points on Mumford-Tate curves, Invent. Math., Tome 126 (1996) no. 3, pp. 413-456 | Article | MR 1419003 | Zbl 0882.11034
[2] A rigid analytic Gross-Zagier formula and arithmetic applications, Ann. of Math. (2), Tome 146 (1997) no. 1, pp. 111-147 (With an appendix by Bas Edixhoven) | Article | MR 1469318 | Zbl 1029.11027
[3] -adic periods, -adic -functions, and the -adic uniformization of Shimura curves, Duke Math. J., Tome 98 (1999) no. 2, pp. 305-334 | Article | MR 1695201 | Zbl 1037.11045
[4] Iwasawa’s main conjecture for elliptic curves over anticyclotomic -extensions, Ann. of Math. (2), Tome 162 (2005) no. 1, pp. 1-64 | Article | MR 2178960 | Zbl 1093.11037
[5] -functions and Tamagawa numbers of motives, The Grothendieck Festschrift, Vol. I, Birkhäuser Boston, Boston, MA (Progr. Math.) Tome 86 (1990), pp. 333-400 | MR 1086888 | Zbl 0768.14001
[6] Quotients of group rings arising from two-dimensional representations, C. R. Acad. Sci. Paris Sér. I Math., Tome 312 (1991) no. 4, pp. 323-328 | MR 1094193 | Zbl 0718.16018
[7] Uniformisation -adique des courbes de Shimura: les théorèmes de Čerednik et de Drinfeld, Astérisque (1991) no. 196-197, pp. 7, 45-158 (Courbes modulaires et courbes de Shimura (Orsay, 1987/1988)) | MR 1141456 | Zbl 0781.14010
[8] On the modularity of elliptic curves over : wild 3-adic exercises, J. Amer. Math. Soc., Tome 14 (2001) no. 4, pp. 843-939 | Article | MR 1839918 | Zbl 0982.11033
[9] Eisenstein series on the metaplectic group and nonvanishing theorems for automorphic -functions and their derivatives, Ann. of Math. (2), Tome 131 (1990) no. 1, pp. 53-127 | Article | MR 1038358 | Zbl 0699.10039
[10] Sur la mauvaise réduction des courbes de Shimura, Compositio Math., Tome 59 (1986) no. 2, pp. 151-230 | Numdam | MR 860139 | Zbl 0607.14021
[11] Sur les représentations galoisiennes modulo attachées aux formes modulaires, Duke Math. J., Tome 59 (1989) no. 3, pp. 785-801 | Article | MR 1046750 | Zbl 0703.11027
[12] Uniformization of algebraic curves by discrete arithmetic subgroups of with compact quotient spaces, Mat. Sb. (N.S.), Tome 100(142) (1976) no. 1, p. 59-88, 165 | MR 491706
[13] Kummer theory for abelian varieties over local fields, Invent. Math., Tome 124 (1996) no. 1-3, pp. 129-174 | Article | MR 1369413 | Zbl 0858.11032
[14] Modularity of certain potentially Barsotti-Tate Galois representations, J. Amer. Math. Soc., Tome 12 (1999) no. 2, pp. 521-567 | Article | MR 1639612 | Zbl 0923.11085
[15] Fermat’s last theorem, Current developments in mathematics, 1995 (Cambridge, MA), Internat. Press, Cambridge, MA (1994), pp. 1-154 | Zbl 0877.11035
[16] Periods of Hilbert modular forms and rational points on elliptic curves, Int. Math. Res. Not. (2003) no. 40, pp. 2153-2180 | Article | MR 1997296 | Zbl 1038.11035
[17] On deformation rings and Hecke rings, Ann. of Math. (2), Tome 144 (1996) no. 1, pp. 137-166 | Article | MR 1405946 | Zbl 0867.11032
[18] Nonoptimal levels of mod modular representations, Invent. Math., Tome 115 (1994) no. 3, pp. 435-462 | Article | MR 1262939 | Zbl 0847.11025
[19] Coverings of -adic symmetric domains, Funkcional. Anal. i Priložen., Tome 10 (1976) no. 2, pp. 29-40 | MR 422290 | Zbl 0346.14010
[20] The basis problem for modular forms and the traces of the Hecke operators, Modular functions of one variable, I (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Springer, Berlin (Lecture Notes in Math.) Tome 320 (1973), pp. 75-151 | MR 485698 | Zbl 0258.10013
[21] Schottky groups and Mumford curves, Springer, Berlin, Lecture Notes in Mathematics, Tome 817 (1980) | MR 590243 | Zbl 0442.14009
[22] Iwasawa theory for elliptic curves, Arithmetic theory of elliptic curves (Cetraro, 1997), Springer, Berlin (Lecture Notes in Math.) Tome 1716 (1999), pp. 51-144 | MR 1754686 | Zbl 0946.11027
[23] Heights and the special values of -series, Number theory (Montreal, Que., 1985), Amer. Math. Soc., Providence, RI (CMS Conf. Proc.) Tome 7 (1987), pp. 115-187 | MR 894322 | Zbl 0623.10019
[24] Kolyvagin’s work on modular elliptic curves, -functions and arithmetic (Durham, 1989), Cambridge Univ. Press, Cambridge (London Math. Soc. Lecture Note Ser.) Tome 153 (1991), pp. 235-256 | Zbl 0743.14021
[25] Heegner points and derivatives of -series, Invent. Math., Tome 84 (1986) no. 2, pp. 225-320 | Article | MR 833192 | Zbl 0608.14019
[26] Groupes de monodromie en géométrie algébrique. I, Springer-Verlag, Berlin (1972) (Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 I), Dirigé par A. Grothendieck. Avec la collaboration de M. Raynaud et D. S. Rim, Lecture Notes in Mathematics, Vol. 288) | MR 354656
[27] Automorphic forms on , Springer-Verlag, Berlin (1970) (Lecture Notes in Mathematics, Vol. 114) | MR 401654 | Zbl 0236.12010
[28] Level lowering for modular mod representations over totally real fields, Math. Ann., Tome 313 (1999) no. 1, pp. 141-160 | Article | MR 1666809 | Zbl 0978.11020
[29] Mazur’s principle for totally real fields of odd degree, Compositio Math., Tome 116 (1999) no. 1, pp. 39-79 | Article | MR 1669444 | Zbl 1053.11043
[30] Correspondences on Shimura curves and Mazur’s principle at , Pacific J. Math., Tome 213 (2004) no. 2, pp. 267-280 | Article | MR 2036920 | Zbl 1073.11030
[31] Integral Hodge theory and congruences between modular forms, Duke Math. J., Tome 80 (1995) no. 2, pp. 419-484 | Article | MR 1369399 | Zbl 0851.11032
[32] Local Diophantine properties of Shimura curves, Math. Ann., Tome 270 (1985) no. 2, pp. 235-248 | Article | MR 771981 | Zbl 0536.14018
[33] Finiteness of and SH for a subclass of Weil curves, Izv. Akad. Nauk SSSR Ser. Mat., Tome 52 (1988) no. 3, p. 522-540, 670–671 | MR 954295 | Zbl 0662.14017
[34] Finiteness of SH over totally real fields, Izv. Akad. Nauk SSSR Ser. Mat., Tome 55 (1991) no. 4, pp. 851-876 | MR 1137589 | Zbl 0791.14019
[35] On the Birch and Swinnerton-Dyer conjecture over totally real fields, Dipartimento di Matematica P. e A., Padova (2004) (Ph. D. Thesis)
[36] Arithmetic duality theorems, Academic Press Inc., Boston, MA, Perspectives in Mathematics, Tome 1 (1986) | MR 881804 | Zbl 0613.14019
[37] Mean values of derivatives of modular -series, Ann. of Math. (2), Tome 133 (1991) no. 3, pp. 447-475 | Article | MR 1109350 | Zbl 0745.11032
[38] On the levels of mod Hilbert modular forms, J. Reine Angew. Math., Tome 537 (2001), pp. 33-65 | Article | MR 1856257 | Zbl 0982.11023
[39] On modular representations of arising from modular forms, Invent. Math., Tome 100 (1990) no. 2, pp. 431-476 | Article | MR 1047143 | Zbl 0773.11039
[40] Congruence relations between modular forms, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983), PWN, Warsaw (1984), pp. 503-514 | MR 804706 | Zbl 0575.10024
[41] Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math., Tome 15 (1972) no. 4, pp. 259-331 | Article | MR 387283 | Zbl 0235.14012
[42] The special values of the zeta functions associated with Hilbert modular forms, Duke Math. J., Tome 45 (1978) no. 3, pp. 637-679 | Article | MR 507462 | Zbl 0394.10015
[43] Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo (1971) (Kanô Memorial Lectures, No. 1) | MR 314766 | Zbl 0221.10029
[44] The arithmetic of elliptic curves, Springer-Verlag, New York, Graduate Texts in Mathematics, Tome 106 (1986) | MR 817210 | Zbl 0585.14026
[45] On Galois representations associated to Hilbert modular forms, Invent. Math., Tome 98 (1989) no. 2, pp. 265-280 | Article | MR 1016264 | Zbl 0705.11031
[46] Ring-theoretic properties of certain Hecke algebras, Ann. of Math. (2), Tome 141 (1995) no. 3, pp. 553-572 | Article | MR 1333036 | Zbl 0823.11030
[47] Arithmétique des algèbres de quaternions, Springer, Berlin, Lecture Notes in Mathematics, Tome 800 (1980) | MR 580949 | Zbl 0422.12008
[48] Sur les valeurs de certaines fonctions automorphes en leur centre de symétrie, Compositio Math., Tome 54 (1985) no. 2, pp. 173-242 | Numdam | MR 783511 | Zbl 0567.10021
[49] Correspondances de Shimura et quaternions, Forum Math., Tome 3 (1991) no. 3, pp. 219-307 | Article | MR 1103429 | Zbl 0724.11026
[50] On ordinary -adic representations associated to modular forms, Invent. Math., Tome 94 (1988) no. 3, pp. 529-573 | Article | MR 969243 | Zbl 0664.10013
[51] Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2), Tome 141 (1995) no. 3, pp. 443-551 | Article | MR 1333035 | Zbl 0823.11029
[52] Gross-Zagier formula for , Asian J. Math., Tome 5 (2001) no. 2, pp. 183-290 | MR 1868935 | Zbl 01818531
[53] Heights of Heegner points on Shimura curves, Ann. of Math. (2), Tome 153 (2001) no. 1, pp. 27-147 | Article | MR 1826411 | Zbl 1036.11029