Étant donné une fonction rationnelle de degré au moins 2 défini sur un corps de nombres , nous montrons que pour chaque place de , il existe une seule mesure sur l’espace de Berkovich tel que si est un séquence de points de dont les hauteurs -canonique tendent vers zéro, alors les points et leurs -conjugués sont équidistribués selon .
La preuve utilise un relèvement de pour construire une fonction de Arakelov-Green de deux variables pour chaque . La mesure s’obtient comme le laplacien (au sens d’espace de Berkovich) de . Les ingrédients principaux de la preuve sont un principe de minimisation de l’énergie pour et une formule pour le diamètre transfini homogène de l’ensemble rempli de Julia -adique pour chaque place .
Given a rational function on of degree at least 2 with coefficients in a number field , we show that for each place of , there is a unique probability measure on the Berkovich space such that if is a sequence of points in whose -canonical heights tend to zero, then the ’s and their -conjugates are equidistributed with respect to .
The proof uses a polynomial lift of to construct a two-variable Arakelov-Green’s function for each . The measure is obtained by taking the Berkovich space Laplacian of . The main ingredients in the proof are an energy minimization principle for and a formula for the homogeneous transfinite diameter of the -adic filled Julia set for each place .
@article{AIF_2006__56_3_625_0, author = {Baker, Matthew H. and Rumely, Robert}, title = {Equidistribution of Small Points, Rational Dynamics, and Potential Theory}, journal = {Annales de l'Institut Fourier}, volume = {56}, year = {2006}, pages = {625-688}, doi = {10.5802/aif.2196}, zbl = {pre05176555}, mrnumber = {2244226}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2006__56_3_625_0} }
Baker, Matthew H.; Rumely, Robert. Equidistribution of Small Points, Rational Dynamics, and Potential Theory. Annales de l'Institut Fourier, Tome 56 (2006) pp. 625-688. doi : 10.5802/aif.2196. http://gdmltest.u-ga.fr/item/AIF_2006__56_3_625_0/
[1] Points entiers sur les surfaces arithmétiques, J. Reine Angew. Math., Tome 531 (2001), pp. 201-235 | Article | MR 1810122 | Zbl 1007.11041
[2] Canonical heights, transfinite diameters, and polynomial dynamics, J. Reine Angew. Math., Tome 585 (2005), pp. 61-92 | Article | MR 2164622 | Zbl 1071.11040
[3] Harmonic analysis on metrized graphs (to appear in Canad. J. Math.) | Zbl 1123.43006
[4] Spectral theory and analytic geometry over nonarchimedean fields, AMS Mathematical Surveys and Monographs Tome 33 (1990) (AMS, Providence) | MR 1070709 | Zbl 0715.14013
[5] Limit distribution of small points on algebraic tori, Duke Math. J., Tome 89 (1997), pp. 465-476 | Article | MR 1470340 | Zbl 0918.11035
[6] Subvarieties of linear tori and the unit equation: a survey, Analytic Number Theory, Cambridge Univ. Press, Cambridge (London Math. Soc. Lecture Note) Tome 247 (1996), pp. 1-20 ((Kyoto, 1996)) | MR 1694981 | Zbl 0923.11097
[7] Canonical heights on projective space, Journal of Number Theory, Tome 63 (1997), pp. 211-243 | Article | MR 1443758 | Zbl 0895.14006
[8] Canonical heights on varieties with morphisms, Compositio Math., Tome 89 (1993), pp. 163-205 | Numdam | MR 1255693 | Zbl 0826.14015
[9] Equidistribution of small points in finite fibers (preprint available at http://arXiv.org/abs/math.NT/0304023)
[10] Capacity theory on varieties, Compositio Math., Tome 80 (1991), pp. 71-84 | Numdam | MR 1127060 | Zbl 0761.11028
[11] The capacity pairing, J. Reine Angew. Math., Tome 434 (1993), pp. 1-44 | Article | MR 1195689 | Zbl 0756.14013
[12] Dynamics of rational maps: Lyapunov exponents, bifurcations, and metrics on the sphere, Mathematische Annalen, Tome 326 (2003), pp. 43-73 | Article | MR 1981611 | Zbl 1032.37029
[13] Calculus on arithmetic surfaces, Annals of Math., Tome 119 (1984), pp. 387-424 | Article | MR 740897 | Zbl 0559.14005
[14] The valuative tree, Lecture Notes in Mathematics, Springer-Verlag, Berlin and New York, Tome 1853 (2004) | MR 2097722 | Zbl 1064.14024
[15] Equidistribution des points de petite hauteur (http://arXiv.org/abs/math.NT/0407471, to appear in Math. Annalen)
[16] Théorème d’équidistribution de Brolin en dynamique -adique, C. R. Math. Acad. Sci., Tome 339 (2004) no. 4, pp. 271-276 | MR 2092012 | Zbl 1052.37039
[17] An invariant measure for rational maps, Bol. Soc. Brasil. Mat., Tome 14 (1983), pp. 45-62 | Article | MR 736568 | Zbl 0568.58027
[18] Superattractive fixed points in , Indiana Univ. Math. J., Tome 43 (1994), pp. 321-365 | Article | MR 1275463 | Zbl 0858.32023
[19] Pluripotential Theory, Oxford Science Publications, London Mathematical Society Monographs (New Series), Tome 6 (1991) | MR 1150978 | Zbl 0742.31001
[20] Arakelov Theory, Springer–Verlag (1988) | MR 969124 | Zbl 0667.14001
[21] Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory Dynamical Systems, Tome 3 (1983), pp. 351-385 | MR 741393 | Zbl 0537.58035
[22] Géométrie d’Arakelov des variétés toriques et fibrés en droites intégrables, Mémoires de la SMF, Paris Tome 80 (2000) | Numdam | Zbl 0963.14009
[23] Dynamics in One Complex Variable, Vieweg (2000) (2nd ed.) | MR 1721240 | Zbl 0972.30014
[24] Mahler measure for dynamical systems on and intersection theory on a singular arithmetic surface, Geometric methods in algebra and number theory, Birkhaüser (Progress in Mathematic) Tome 235 (2004), pp. 219-250 | MR 2166086 | Zbl 1101.11020
[25] Potential Theory in the Complex Plane, London Math. Soc. Tome 28 (1995) (Student Texts) | MR 1334766 | Zbl 0828.31001
[26] Théorie de Fatou et Julia dans la droite projective de Berkovich (in preparation)
[27] Dynamique des fonctions rationelles sur les corps locaux, Astérisque, Tome 287 (2003), pp. 147-230 | MR 2040006 | Zbl 1140.37336 | Zbl 02066305
[28] Real Analysis, MacMillan Publishing Co., New York (1988) (3rd ed.) | MR 1013117 | Zbl 0704.26006
[29] Real and Complex Analysis, McGraw-Hill, New York (1974) (2nd edition) | MR 344043 | Zbl 0278.26001
[30] Capacity Theory on Algebraic Curves, Lecture Notes in Mathematics, Springer-Verlag, Berlin-Heidelberg-New York, Tome 1378 (1989) | MR 1009368 | Zbl 0679.14012
[31] An intersection theory for curves, with analytic contributions from nonarchimedean places, Canadian Mathematical Society Conference Proceedings, AMS, Tome 15 (1995), pp. 325-357 | MR 1353942 | Zbl 0859.11037
[32] On Bilu’s equidistribution theorem, Contemp. Math., Tome 237 (1999), pp. 159-166 | MR 1710794 | Zbl 1029.11030
[33] Analysis and dynamics on the Berkovich projective line (preprint available at http://arXiv.org/abs/math.NT/0407426)
[34] Arithmetic capacities on , Math. Zeit., Tome 215 (1994), pp. 533-560 | Article | MR 1269489 | Zbl 0794.31008
[35] Existence of the Sectional Capacity, American Mathematical Society, Providence, R.I., AMS Memoires, Tome 145 (2000) no. 690 | MR 1677934 | Zbl 0987.14018
[36] Advanced Topics in the Arithmetic of Elliptic Curves, Springer-Verlag, Berlin and New York (1994) | MR 1312368 | Zbl 0911.14015
[37] Équirépartition des petits points, Invent. Math., Tome 127 (1997), pp. 337-347 | Article | MR 1427622 | Zbl 0991.11035
[38] Théorie du potentiel sur les courbes en géométrie analytique non archimédienne. Applications à la théorie d’Arakelov, University of Rennes (2005) (Ph. D. Thesis)
[39] Potential Theory in Modern Function Theory, Maruzen, Tokyo (1959) (reprinted by Chelsea, New York) | MR 114894 | Zbl 0087.28401
[40] Algebra, New York Tome 1 (1970) | Zbl 0137.25403
[41] Admissible pairing on a curve, Invent. Math., Tome 112 (1993), pp. 171-193 | Article | MR 1207481 | Zbl 0795.14015