Soit un corps local non-archimédien. Ce papier donne un isomorphisme explicite entre le dual de la représentation spéciale de et l’espace des cocycles harmoniques définis sur l’immeuble de Bruhat-Tits de , au sens de E. de Shalit [11]. Nous déduisons, en appliquant les résultats d’un papier de P. Schneider et U. Stuhler [9], qu’il existe un isomorphisme -équivariant entre le groupe de cohomologie de l’espace symétrique de Drinfeld et l’espace des cocycles harmoniques.
Let be a non-archimedean local field. This paper gives an explicit isomorphism between the dual of the special representation of and the space of harmonic cochains defined on the Bruhat-Tits building of , in the sense of E. de Shalit [11]. We deduce, applying the results of a paper of P. Schneider and U. Stuhler [9], that there exists a -equivariant isomorphism between the cohomology group of the Drinfeld symmetric space and the space of harmonic cochains.
@article{AIF_2006__56_3_561_0, author = {A\"\i t Amrane, Yacine}, title = {Cohomology of Drinfeld symmetric spaces and Harmonic cochains}, journal = {Annales de l'Institut Fourier}, volume = {56}, year = {2006}, pages = {561-597}, doi = {10.5802/aif.2194}, zbl = {1118.22009}, mrnumber = {2244224}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2006__56_3_561_0} }
Aït Amrane, Yacine. Cohomology of Drinfeld symmetric spaces and Harmonic cochains. Annales de l'Institut Fourier, Tome 56 (2006) pp. 561-597. doi : 10.5802/aif.2194. http://gdmltest.u-ga.fr/item/AIF_2006__56_3_561_0/
[1] Cohomologie des espaces symétriques de Drinfeld, cocycles harmoniques et formes automorphes, University of Toulouse 3 (2003) (Ph. D. Thesis)
[2] Cohomologie des espaces symétriques de Drinfeld et cocycles harmoniques, C. R. Acad. Sci. Paris, Ser. I, Tome 338 (2004), pp. 191-196 | MR 2038322 | Zbl 1052.14023
[3] Cohomologie d’immeubles et de groupes -arithmétiques, Topology, Tome 15 (1976), pp. 211-232 | Article | MR 447474 | Zbl 0338.20055
[4] 4-6, Groupes et algèbres de Lie, Masson, Paris (1981) | MR 647314 | Zbl 0483.22001
[5] Buildings, Springer-Verlag, New York (1989) | MR 969123 | Zbl 0715.20017
[6] Elliptic Modules, Math. USSR Sbornik, Tome 23 (1974), pp. 561-592 | Article | Zbl 0321.14014
[7] Buildings and classical groups, Chapman and Hall, London (1997) | MR 1449872 | Zbl 0933.20019
[8] Lecture 11: Automorphic forms and Drinfeld’s reciprocity law, Drinfeld modules, modular schemes and applications, World Scientific (1997), pp. 188-223 (Proceedings of the Workshop at Alden-Biesen 9-14 sept. 1996) | MR 1630605 | Zbl 0924.11051
[9] The cohomology of -adic symmetric spaces, Inv. Math., Tome 105 (1991), pp. 47-122 | Article | MR 1109620 | Zbl 0751.14016
[10] An integral transform for -adic symmetric spaces, Duke Math. J., Tome 86 (1997), pp. 391-433 | Article | MR 1432303 | Zbl 0885.14012
[11] Residues on buildings and de Rham cohomology of -adic symmetric domains, Duke Math. J., Tome 106 (2000), pp. 123-191 | Article | MR 1810368 | Zbl 01820775