On prouve que pour décrire la frontière de Poisson des affinités à coefficients rationnels est nécessaire et suffisant de considérer l’action sur le corps réel et tous les corps -adiques.
We prove that in order to describe the Poisson boundary of rational affinities, it is necessary and sufficient to consider the action on real and all -adic fileds.
@article{AIF_2006__56_2_499_0, author = {Brofferio, Sara}, title = {The Poisson boundary of random rational affinities}, journal = {Annales de l'Institut Fourier}, volume = {56}, year = {2006}, pages = {499-515}, doi = {10.5802/aif.2191}, zbl = {1087.60011}, mrnumber = {2226025}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2006__56_2_499_0} }
Brofferio, Sara. The Poisson boundary of random rational affinities. Annales de l'Institut Fourier, Tome 56 (2006) pp. 499-515. doi : 10.5802/aif.2191. http://gdmltest.u-ga.fr/item/AIF_2006__56_2_499_0/
[1] The random difference equation in the critical case, Ann. Probab., Tome 25 (1997) no. 1, pp. 478-493 | Article | MR 1428518 | Zbl 0873.60045
[2] Strict stationarity of generalized autoregressive processes, Ann. Probab., Tome 20 (1992) no. 4, pp. 1714-1730 | Article | MR 1188039 | Zbl 0763.60015
[3] Poisson boundary for finitely generated groups of rational affinities (Preprint)
[4] Speed of locally contractive stochastic systems, Ann. Probab., Tome 31 (2003) no. 4, pp. 2040-2067 | Article | MR 2016611 | Zbl 1046.60067
[5] Random walks on the affine group of local fields and of homogeneous trees, Ann. Inst. Fourier (Grenoble), Tome 44 (1994) no. 4, pp. 1243-1288 | Article | Numdam | MR 1306556 | Zbl 0809.60010
[6] Global fields, Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), Thompson, Washington, D.C. (1967), pp. 42-84 | MR 222054
[7] Entropie, théorèmes limite et marches aléatoires, Probability measures on groups, VIII (Oberwolfach, 1985), Springer, Berlin (Lecture Notes in Math.) Tome 1210 (1986), pp. 241-284 | MR 879010 | Zbl 0612.60005
[8] Quelques applications du théorème ergodique sous-additif, Conference on Random Walks (Kleebach, 1979) (French), Soc. Math. France, Paris (Astérisque) Tome 74 (1980), p. 183-201, 4 | MR 588163 | Zbl 0446.60059
[9] Noyaux potentiels associés aux marches aléatoires sur les espaces homogènes. Quelques exemples clefs dont le groupe affine, Théorie du potentiel (Orsay, 1983), Springer, Berlin (Lecture Notes in Math.) Tome 1096 (1984), pp. 223-260 | MR 890360 | Zbl 0571.60076
[10] Boundary theory and stochastic processes on homogeneous spaces, Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972), Amer. Math. Soc., Providence, R.I. (1973), pp. 193-229 | MR 352328 | Zbl 0289.22011
[11] Random walks on discrete groups: boundary and entropy, Ann. Probab., Tome 11 (1983) no. 3, pp. 457-490 | Article | MR 1178986 | Zbl 0823.60006
[12] Poisson boundaries of random walks on discrete solvable groups, Probability measures on groups, X (Oberwolfach, 1990), Plenum, New York (1991), pp. 205-238 | MR 1815698 | Zbl 0984.60088
[13] The Poisson formula for groups with hyperbolic properties, Ann. of Math. (2), Tome 152 (2000) no. 3, pp. 659-692 | Article | MR 704539 | Zbl 0641.60009
[14] Random difference equations and renewal theory for products of random matrices, Acta Math., Tome 131 (1973), pp. 207-248 | Article | MR 440724 | Zbl 0291.60029
[15] Introduction to diophantine approximations, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. (1966) | MR 209227 | Zbl 0144.04005
[16] On a stochastic difference equation and a representation of nonnegative infinitely divisible random variables, Adv. in Appl. Probab., Tome 11 (1979) no. 4, pp. 750-783 | Article | MR 544194 | Zbl 0417.60073