Nous prouvons un théorème de Paley-Wiener spectral pour le groupe d’Heisenberg en utilisant un théorème du support pour les moyennes sphériques tordues sur Si est une fonction dans la classe de Schwartz nous montrons que a un support dans une boule de de rayon si et seulement si pour et pour tout C’est un analogue du théorème du support prouvé dans les contextes euclidiens et hyperboliques par Helgason. Lorsque nous montrons que les deux conditions pour impliquent un théorème du support pour une grande classe de fonctions à croissance exponentielle. Il est surprenant de constater que ce dernier résultat ne se généralise pas aux dimensions supérieures.
We prove a spectral Paley-Wiener theorem for the Heisenberg group by means of a support theorem for the twisted spherical means on If is a Schwartz class function we show that is supported in a ball of radius in if and only if for for all This is an analogue of Helgason’s support theorem on Euclidean and hyperbolic spaces. When we show that the two conditions for imply a support theorem for a large class of functions with exponential growth. Surprisingly enough,this latter result does not generalize to higher dimensions.
@article{AIF_2006__56_2_459_0, author = {Narayanan, E.~K. and Thangavelu, S.}, title = {A spectral Paley-Wiener theorem for the Heisenberg group and a support theorem for the twisted spherical means on $\mathbb{C}^n$}, journal = {Annales de l'Institut Fourier}, volume = {56}, year = {2006}, pages = {459-473}, doi = {10.5802/aif.2189}, zbl = {1089.43006}, mrnumber = {2226023}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2006__56_2_459_0} }
Narayanan, E. K.; Thangavelu, S. A spectral Paley-Wiener theorem for the Heisenberg group and a support theorem for the twisted spherical means on $\mathbb{C}^n$. Annales de l'Institut Fourier, Tome 56 (2006) pp. 459-473. doi : 10.5802/aif.2189. http://gdmltest.u-ga.fr/item/AIF_2006__56_2_459_0/
[1] Injectivity sets for the spherical means on the Heisenberg group, J. Fourier Anal. Appl., Tome 5 (1999) no. 4, pp. 363-372 | Article | MR 1700090 | Zbl 0931.43007
[2] A spectral Paley-Wiener theorem, Monatsh. Math., Tome 116 (1993) no. 1, pp. 1-11 | Article | MR 1239140 | Zbl 0803.43001
[3] Generalized spectral projections on symmetric spaces of non compact type: Paley-Wiener theorems, J. Funct. Anal., Tome 135 (1996) no. 1, pp. 206-232 | Article | MR 1367630 | Zbl 0848.43009
[4] Spherical means in annular regions, Comm. Pure Appl. Math., Tome 46 (1993) no. 3, pp. 441-451 | Article | MR 1202964 | Zbl 0841.31006
[5] Groups and Geometric Analysis, Academic press, New York (1984) | MR 754767 | Zbl 0543.58001
[6] Injectivity sets for the spherical means on the Heisenberg group, J. Math. Anal. Appl., Tome 263 (2001) no. 2, pp. 565-579 | Article | MR 1866065 | Zbl 0995.43003
[7] Asymptotics and special functions, Academic press, New York (1974) (Computer Science and Applied Mathematics) | MR 435697 | Zbl 0303.41035
[8] Function theory in the unit ball of , Springer-Verlag, New York - Berlin Tome 241 (1980) | MR 601594 | Zbl 0495.32001
[9] On the injectivity of twisted spherical means on , Israel J. Math., Tome 122 (2), pp. 79-92 | Article | MR 1826492 | Zbl 0986.43001
[10] Harmonic analysis as spectral theory of Laplacians, J. Funct. Anal., Tome 87 (1989), pp. 51-148 | Article | MR 1025883 | Zbl 0694.43008
[11] Orthogonal polynomials, Amer. Math. Soc., Providence, R. I., Colloq. Pub., Tome 23 (1967)
[12] Lectures on Hermite and Laguerre expansions, Princeton University Press, Princeton, NJ, Mathematical Notes, Tome 42 (1993) | MR 1215939 | Zbl 0791.41030
[13] Harmonic analysis on the Heisenberg group, Birkhäuser Boston, Boston, MA, Progress in Mathematics, Tome 159 (1998) | MR 1633042 | Zbl 0892.43001
[14] An introduction to the uncertainty principle, Birkhäuser Boston, Boston, MA, Progress in Mathematics, Tome 217 (2004) | MR 2008480 | Zbl 02039097