A spectral Paley-Wiener theorem for the Heisenberg group and a support theorem for the twisted spherical means on n
[Un théorème de Paley-Wiener spectral pour le groupe d’Heisenberg et un théorème de support pour les moyennes shériques tordues sur n ]
Narayanan, E. K. ; Thangavelu, S.
Annales de l'Institut Fourier, Tome 56 (2006), p. 459-473 / Harvested from Numdam

Nous prouvons un théorème de Paley-Wiener spectral pour le groupe d’Heisenberg en utilisant un théorème du support pour les moyennes sphériques tordues sur n . Si f(z)e 1 4|z| 2 est une fonction dans la classe de Schwartz nous montrons que f a un support dans une boule de n de rayon B si et seulement si f×μ r (z)=0 pour r>B+|z| et pour tout z n . C’est un analogue du théorème du support prouvé dans les contextes euclidiens et hyperboliques par Helgason. Lorsque n=1 nous montrons que les deux conditions f×μ r (z)=μ r ×f(z)=0 pour r>B+|z| impliquent un théorème du support pour une grande classe de fonctions à croissance exponentielle. Il est surprenant de constater que ce dernier résultat ne se généralise pas aux dimensions supérieures.

We prove a spectral Paley-Wiener theorem for the Heisenberg group by means of a support theorem for the twisted spherical means on n . If f(z)e 1 4|z| 2 is a Schwartz class function we show that f is supported in a ball of radius B in n if and only if f×μ r (z)=0 for r>B+|z| for all z n . This is an analogue of Helgason’s support theorem on Euclidean and hyperbolic spaces. When n=1 we show that the two conditions f×μ r (z)=μ r ×f(z)=0 for r>B+|z| imply a support theorem for a large class of functions with exponential growth. Surprisingly enough,this latter result does not generalize to higher dimensions.

Publié le : 2006-01-01
DOI : https://doi.org/10.5802/aif.2189
Classification:  43A85,  53C65,  44A35
@article{AIF_2006__56_2_459_0,
     author = {Narayanan, E.~K. and Thangavelu, S.},
     title = {A spectral Paley-Wiener theorem for the Heisenberg group and a support theorem for the twisted spherical means on $\mathbb{C}^n$},
     journal = {Annales de l'Institut Fourier},
     volume = {56},
     year = {2006},
     pages = {459-473},
     doi = {10.5802/aif.2189},
     zbl = {1089.43006},
     mrnumber = {2226023},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2006__56_2_459_0}
}
Narayanan, E. K.; Thangavelu, S. A spectral Paley-Wiener theorem for the Heisenberg group and a support theorem for the twisted spherical means on $\mathbb{C}^n$. Annales de l'Institut Fourier, Tome 56 (2006) pp. 459-473. doi : 10.5802/aif.2189. http://gdmltest.u-ga.fr/item/AIF_2006__56_2_459_0/

[1] Agranovsky, M. L.; Rawat, Rama Injectivity sets for the spherical means on the Heisenberg group, J. Fourier Anal. Appl., Tome 5 (1999) no. 4, pp. 363-372 | Article | MR 1700090 | Zbl 0931.43007

[2] Bray, W. O. A spectral Paley-Wiener theorem, Monatsh. Math., Tome 116 (1993) no. 1, pp. 1-11 | Article | MR 1239140 | Zbl 0803.43001

[3] Bray, W. O. Generalized spectral projections on symmetric spaces of non compact type: Paley-Wiener theorems, J. Funct. Anal., Tome 135 (1996) no. 1, pp. 206-232 | Article | MR 1367630 | Zbl 0848.43009

[4] Epstein, C. L.; Kleiner, B. Spherical means in annular regions, Comm. Pure Appl. Math., Tome 46 (1993) no. 3, pp. 441-451 | Article | MR 1202964 | Zbl 0841.31006

[5] Helgason, S. Groups and Geometric Analysis, Academic press, New York (1984) | MR 754767 | Zbl 0543.58001

[6] Narayanan, E. K.; Thangavelu, S. Injectivity sets for the spherical means on the Heisenberg group, J. Math. Anal. Appl., Tome 263 (2001) no. 2, pp. 565-579 | Article | MR 1866065 | Zbl 0995.43003

[7] Olver, F. W. J. Asymptotics and special functions, Academic press, New York (1974) (Computer Science and Applied Mathematics) | MR 435697 | Zbl 0303.41035

[8] Rudin, W. Function theory in the unit ball of n , Springer-Verlag, New York - Berlin Tome 241 (1980) | MR 601594 | Zbl 0495.32001

[9] Sajith, G.; Thangavelu, S. On the injectivity of twisted spherical means on n , Israel J. Math., Tome 122 (2), pp. 79-92 | Article | MR 1826492 | Zbl 0986.43001

[10] Strichartz, R. S. Harmonic analysis as spectral theory of Laplacians, J. Funct. Anal., Tome 87 (1989), pp. 51-148 | Article | MR 1025883 | Zbl 0694.43008

[11] Szego, G. Orthogonal polynomials, Amer. Math. Soc., Providence, R. I., Colloq. Pub., Tome 23 (1967)

[12] Thangavelu, S. Lectures on Hermite and Laguerre expansions, Princeton University Press, Princeton, NJ, Mathematical Notes, Tome 42 (1993) | MR 1215939 | Zbl 0791.41030

[13] Thangavelu, S. Harmonic analysis on the Heisenberg group, Birkhäuser Boston, Boston, MA, Progress in Mathematics, Tome 159 (1998) | MR 1633042 | Zbl 0892.43001

[14] Thangavelu, S. An introduction to the uncertainty principle, Birkhäuser Boston, Boston, MA, Progress in Mathematics, Tome 217 (2004) | MR 2008480 | Zbl 02039097