Nous employons des outils de la théorie d’intersection résiduelle pour donner une démonstration de l’inegalité obtenue par M. Soares pour l’indice de Poincaré-Hopf d’une singularité isolée d’un feuilletage de .
We give an intersection theoretic proof of M. Soares’ bounds for the Poincaré-Hopf index of an isolated singularity of a foliation of .
@article{AIF_2006__56_1_269_0, author = {Esteves, Eduardo and Vainsencher, Israel}, title = {A note on M. Soares' bounds}, journal = {Annales de l'Institut Fourier}, volume = {56}, year = {2006}, pages = {269-276}, doi = {10.5802/aif.2180}, zbl = {1089.32025}, mrnumber = {2228688}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2006__56_1_269_0} }
Esteves, Eduardo; Vainsencher, Israel. A note on M. Soares’ bounds. Annales de l'Institut Fourier, Tome 56 (2006) pp. 269-276. doi : 10.5802/aif.2180. http://gdmltest.u-ga.fr/item/AIF_2006__56_1_269_0/
[1] The Castelnuovo-Mumford regularity of an integral variety of a vector field on projective space, Math. Res. Lett., Tome 9 (2002), pp. 1-15 | MR 1892310 | Zbl 1037.14022
[2] Intersection theory, Springer, New York (1985) | MR 732620 | Zbl 0541.14005
[3] Principles of algebraic geometry, John Wiley & Sons, New York (1978) | MR 507725 | Zbl 0408.14001
[4] The Poincaré problem for hypersurfaces invariant by one-dimensional foliations, Invent. math., Tome 128 (1997), pp. 495-500 | Article | MR 1452431 | Zbl 0923.32025
[5] Bounding Poincaré-Hopf indices and Milnor numbers, Math. Nachrichten, Tome 278 (2005) no. 6, pp. 703-711 | Article | MR 2135502 | Zbl 02183902
[6] Indices of vector fields and residues of singular holomorphic foliations, Hermann, Paris (1998) | MR 1649358 | Zbl 0910.32035
[7] Classes características em geometria algébrica, IMPA, Rio de Janeiro (1985) | MR 812276