Motivés par la théorie de la supraconductivité et plus précisément par le problème de l’apparition de la supraconductivité à la surface, de nombreux articles ont été consacrés récemment à l’analyse semi-classique de la plus petite valeur propre de l’opérateur de Schrödinger avec champ magnétique (Bernoff-Sternberg, Lu-Pan, Del Pino-Felmer-Sternberg, Helffer-Morame et aussi Bauman-Phillips-Tang pour le cas du disque). Dans cet article, nous proposons des asymptotiques complètes pour les premières valeurs propres dans le cas d’un domaine de dont la courbure du bord n’a qu’un unique maximum non-dégénéré.
Motivated by the theory of superconductivity and more precisely by the problem of the onset of superconductivity in dimension two, many papers devoted to the analysis in a semi-classical regime of the lowest eigenvalue of the Schrödinger operator with magnetic field have appeared recently. Here we would like to mention the works by Bernoff-Sternberg, Lu-Pan, Del Pino-Felmer-Sternberg and Helffer-Morame and also Bauman-Phillips-Tang for the case of a disc. In the present paper we settle one important part of this question completely by proving an asymptotic expansion to all orders for low-lying eigenvalues for generic domains. The word ‘generic’ means in this context that the curvature of the boundary of the domain has a unique non-degenerate maximum.
@article{AIF_2006__56_1_1_0, author = {Fournais, Soeren and Helffer, Bernard}, title = {Accurate eigenvalue asymptotics for the magnetic Neumann Laplacian}, journal = {Annales de l'Institut Fourier}, volume = {56}, year = {2006}, pages = {1-67}, doi = {10.5802/aif.2171}, zbl = {1097.47020}, mrnumber = {2228679}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2006__56_1_1_0} }
Fournais, Soeren; Helffer, Bernard. Accurate eigenvalue asymptotics for the magnetic Neumann Laplacian. Annales de l'Institut Fourier, Tome 56 (2006) pp. 1-67. doi : 10.5802/aif.2171. http://gdmltest.u-ga.fr/item/AIF_2006__56_1_1_0/
[1] Lectures on exponential decay of solutions of second order elliptic equations, Princeton University Press, Math. Notes, Tome 29 (1982) | MR 745286 | Zbl 0503.35001
[2] Stable nucleation for the Ginzburg-Landau system with an applied magnetic field, Arch. Rational Mech. Anal., Tome 142 (1998), pp. 1-43 | Article | MR 1629119 | Zbl 0922.35157
[3] Onset of superconductivity in decreasing fields for general domains, J. Math. Phys., Tome 39 (1998), pp. 1272-1284 | Article | MR 1608449 | Zbl 1056.82523
[4] An application of semi-classical analysis to the asymptotic study of the supercooling field of a superconducting material, Ann. Inst. H. Poincaré (Section Physique Théorique), Tome 58 (1993) no. 2, pp. 169-233 | Numdam | MR 1217119 | Zbl 0779.35104
[5] Analyse mathématique de la supraconductivité dans un domaine à coins : méthodes semi-classiques et numériques, Université Paris 11 (2003) (Ph. D. Thesis)
[6] On the fundamental state for a Schrödinger operator with magnetic fields in domains with corners, Asymptotic Anal., Tome 41 (2005) no. 3-4, pp. 215-258 | MR 2127997 | Zbl 1067.35054
[7] Asymptotics for the low-lying eigenstates of the Schrödinger operator with magnetic field near corners (2005) (preprint)
[8] Schrödinger Operators, Springer Verlag, Berlin (1987) | Zbl 0619.47005
[9] Eigenvalues variation I, Neumann problem for Sturm-Liouville operators, J. Differential Equations, Tome 104 (1993) no. 2, pp. 243-262 | Article | MR 1231468 | Zbl 0784.34021
[10] Spectral Asymptotics in the semi-classical limit, Cambridge University Press, London Mathematical Society Lecture Note Series, Tome 268 (1999) | MR 1735654 | Zbl 0926.35002
[11] Energy asymptotics for type II superconductors (2004) (preprint) | MR 2174430 | Zbl 02227540
[12] Hypoelliptic differential equations and pseudodifferential operators with operator-valued symbols, Mat. Sb. (N.S.), Tome 88 (1972) no. 130, pp. 504-521 ((russian)) | Zbl 0255.35022
[13] Introduction to the semiclassical analysis for the Schrödinger operator and applications, Springer Verlag, Lecture Notes in Math., Tome 1336 (1988) | Zbl 0647.35002
[14] Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells, J. Funct. Anal., Tome 138 (1996) no. 1, pp. 40-81 | Article | MR 1391630 | Zbl 0851.58046
[15] Magnetic bottles in connection with superconductivity, J. Funct. Anal., Tome 185 (2001) no. 2, pp. 604-680 | Article | MR 1856278 | Zbl 01688735
[16] Magnetic bottles for the Neumann problem : curvature effect in the case of dimension 3 (General case), Ann. Sci. École Norm. Sup., Tome 37 (2004), pp. 105-170 | Numdam | MR 2050207 | Zbl 1057.35061
[17] Upper critical field and location of surface nucleation of superconductivity, Ann. Inst. H. Poincaré (Section Analyse non linéaire), Tome 20 (2003) no. 1, pp. 145-181 | Article | Numdam | MR 1958165 | Zbl 1060.35132
[18] Multiple wells in the semiclassical limit I, Comm. Partial Differential Equations, Tome 9 (1984) no. 4, pp. 337-408 | Article | MR 740094 | Zbl 0546.35053
[19] Puits multiples en limite semi-classique II – Interaction moléculaire – Symétries – Perturbations, Ann. Inst. H. Poincaré (Section Physique théorique), Tome 42 (1985) no. 2, pp. 127-212 | Numdam | MR 798695 | Zbl 0595.35031
[20] Puits multiples en limite semiclassique V – le cas des minipuits, Current topics in partial differential equations, Kinokuniya, Tokyo (1986), pp. 133-186 | Zbl 0628.35024
[21] Effet tunnel pour l’équation de Schrödinger avec champ magnétique, Ann. Scuola Norm. Sup. Pisa, Tome 14 (1987) no. 4, pp. 625-657 | Numdam | MR 963493 | Zbl 0699.35205
[22] Eigenvalue problems of Ginzburg-Landau operator in bounded domains, J. Math. Phys., Tome 40 (1999) no. 6, pp. 2647-2670 | Article | MR 1694223 | Zbl 0943.35058
[23] Estimates of the upper critical field for the equations of superconductivity, Physica D, Tome 127 (1999), pp. 73-104 | Article | MR 1678383 | Zbl 0934.35174
[24] Gauge invariant eigenvalue problems on and , Trans. Amer. Math. Soc., Tome 352 (2000) no. 3, pp. 1247-1276 | Article | MR 1675206 | Zbl 1053.35124
[25] Surface nucleation of superconductivity in -dimension, J. of Differential Equations, Tome 168 (2000) no. 2, pp. 386-452 | Article | MR 1808455 | Zbl 0972.35152
[26] Boundary concentration for eigenvalue problems related to the onset of superconductivity, Comm. Math. Phys., Tome 210 (2000), pp. 413-446 | Article | MR 1776839 | Zbl 0982.35077
[27] Methods of modern Mathematical Physics, IV: Analysis of operators, Academic Press, New York (1978) | MR 493421 | Zbl 0401.47001
[28] Autour de l’approximation semi-classique, Birkhäuser, Boston (1987) | MR 897108 | Zbl 0621.35001
[29] Type II Superconductivity, Pergamon, Oxford (1969)
[30] Semi-classical analysis of low lying eigenvalues I, Ann. Inst. H. Poincaré (Section Physique Théorique), Tome 38 (1983) no. 4, pp. 295-307 | Numdam | MR 708966 | Zbl 0526.35027
[31] Operators of principal type with interior boundary conditions, Acta Math., Tome 130 (1973), pp. 1-51 | Article | MR 436226 | Zbl 0253.35076
[32] On the Normal/Superconducting Phase Transition in the Presence of Large Magnetic Fields, Connectivity and Superconductivity, Springer Verlag (Lect. Notes in Physics) Tome M 62 (2000), pp. 188-199 | Zbl 0976.82056
[33] Superfluidity and superconductivity, Institute of Physics Publishing, Bristol and Philadelphia (1990)
[34] Introduction to Superconductivity, McGraw-Hill Inc, New York (1975)