Nous construisons une sous-algèbre de dimension de l’algèbre du groupe de Weyl de type contenant son algèbre de Solomon usuelle ainsi que celle de : n’est autre que l’algèbre de Mantaci-Reutenauer mais notre point de vue nous permet de construire un morphisme d’algèbres surjectif . La construction de Jöllenbeck des caractères irréductibles de à partir des classes d’équivalence coplaxique se transpose alors à . Un appendice à cet article, écrit par P. Baumann et C. Hohlweg, donne le lien combinatoire explicite entre cette construction des caractères irréductibles de et celle obtenue par W. Specht en 1932.
We construct a subalgebra of dimension of the group algebra of the Weyl group of type containing its usual Solomon algebra and the one of : is nothing but the Mantaci-Reutenauer algebra but our point of view leads us to a construction of a surjective morphism of algebras . Jöllenbeck’s construction of irreducible characters of the symmetric group by using the coplactic equivalence classes can then be transposed to . In an appendix, P. Baumann and C. Hohlweg present in an explicit and combinatorial way the relation between this construction of the irreducible characters of and that of W. Specht.
@article{AIF_2006__56_1_131_0, author = {Bonnaf\'e, C\'edric and Hohlweg, Christophe}, title = {Generalized descent algebra and construction of irreducible characters of~hyperoctahedral groups}, journal = {Annales de l'Institut Fourier}, volume = {56}, year = {2006}, pages = {131-181}, doi = {10.5802/aif.2176}, zbl = {1098.20011}, mrnumber = {2228684}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2006__56_1_131_0} }
Bonnafé, Cédric; Hohlweg, Christophe. Generalized descent algebra and construction of irreducible characters of hyperoctahedral groups. Annales de l'Institut Fourier, Tome 56 (2006) pp. 131-181. doi : 10.5802/aif.2176. http://gdmltest.u-ga.fr/item/AIF_2006__56_1_131_0/
[1] The Hopf algebra of signed permutations (in preparation)
[2] A symmetry of the descent algebra of a finite Coxeter group, Adv. in Math., Tome 193 (2005), pp. 416-437 | Article | MR 2137290 | Zbl 02174976
[3] Noncommutative Character Theory of Symmetric groups I, Imperial College press, London (2005)
[4] Left cells in type with unequal parameters, Represent. Theory, Tome 7 (2003), pp. 587-609 | Article | MR 2017068 | Zbl 02115432
[5] 4-6, Groupes et algèbres de Lie, Hermann (1968) | MR 240238 | Zbl 0483.22001
[6] On the induction of Kazhdan-Lusztig cells, Bull. London Math. Soc., Tome 35 (2003) no. 5, pp. 608-614 | Article | MR 1989489 | Zbl 1045.20004
[7] CHEVIE — A system for computing and procesing generic character tables, Applicable Algebra in Eng. Comm. and Comp., Tome 7 (1996), pp. 175-210 | Article | MR 1486215 | Zbl 0847.20006
[8] Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras, LMS, London Math. Soc. Mon. New Series, Tome 21 (2000) | MR 1778802 | Zbl 0996.20004
[9] Hopf algebras of symmetric functions and class functions, Comb. Represent. Groupe symétrique, Acte Table Ronde C.N.R.S, Strasbourg, 1976 (Lecture Notes in Math.) Tome 579 (1977), pp. 168-181 | MR 506405 | Zbl 0366.16002
[10] Reflection groups and Coxeter groups, Cambridge university press Tome 29 (1990) | MR 1066460 | Zbl 0725.20028
[11] Nichtkommutative Charaktertheorie der symmetrischen Gruppen, Bayreuth. Math. Schr., Tome 56 (1999), pp. 1-41 | MR 1717091 | Zbl 0931.20013
[12] Le monoïde plaxique, Noncommutative structures in algebra and geometric combinatorics, CNR, Rome, Naples, 1978 (Quad. “Ricerca Sci.”) Tome 109 (1981), pp. 129-156 | MR 646486 | Zbl 0517.20036
[13] Characters of reductive groups over a finite field, Princeton University Press, Annals of Math. Studies, Tome 107 (1984) | MR 742472 | Zbl 0556.20033
[14] Symmetric functions and Hall Polynomials, Oxford science publications, The Clarendon press, Oxford university press, Oxford mathematical monographs (1995) ((with contributions by A. Zelevinsky)) | MR 1354144 | Zbl 0899.05068
[15] Duality between quasi-symmetric functions ans Solomon descent algebra, J. Algebra, Tome 177 (1995), pp. 967-982 | Article | MR 1358493 | Zbl 0838.05100
[16] A generalization of Solomon’s algebra for hyperoctahedral groups and other wreath products, Comm. Algebra, Tome 23 (1995) no. 1, pp. 27-56 | Article | MR 1311773 | Zbl 0836.20010
[17] Algèbres de Hopf de tableaux, Ann. Sci. Math., Québec, Tome 19 (1996), pp. 79-90 | MR 1334836 | Zbl 0835.16035
[18] A Mackey formula in the group ring of a Coxeter group, J. Algebra, Tome 41 (1976), pp. 255-268 | Article | MR 444756 | Zbl 0355.20007
[19] Eine Verallgemeinerung der symmetrischen Gruppe, Schriften Math. Seminar Berlin, Tome 1 (1932), pp. 1-32 | Zbl 0004.33804
[20] Some aspects of groups acting on finite posets, J. Combin. Theory Ser. A, Tome 32 (1982), pp. 132-161 | Article | MR 654618 | Zbl 0496.06001
[21] Lectures on Noncommutative Symmetric Functions, Interaction of Combinatorics and Representation Theory, Math. Soc. of Japan (MSJ Memoirs) Tome 11 (2001), pp. 39-94 | MR 1862149 | Zbl 0990.05136