On étudie les bases et les frames des noyaux reproduisants dans les sous-espaces modèles de l’espace de Hardy dans le demi-plan supérieur. On considère le problème de la stabilité d’une base des noyaux reproduisants par rapport aux petites perturbations des pôles . En utilisant les majorations récentes des derivées dans les espaces , on obtient les estimations des perturbations admissibles, qui généralisent les théorèmes de W.S. Cohn et E. Fricain.
We study the bases and frames of reproducing kernels in the model subspaces of the Hardy class in the upper half-plane. The main problem under consideration is the stability of a basis of reproducing kernels under “small” perturbations of the points . We propose an approach to this problem based on the recently obtained estimates of derivatives in the spaces and produce estimates of admissible perturbations generalizing certain results of W.S. Cohn and E. Fricain.
@article{AIF_2005__55_7_2399_0, author = {Baranov, Anton}, title = {Stability of the bases and frames reproducing kernels in model spaces}, journal = {Annales de l'Institut Fourier}, volume = {55}, year = {2005}, pages = {2399-2422}, doi = {10.5802/aif.2165}, mrnumber = {2207388}, zbl = {1101.30036}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2005__55_7_2399_0} }
Baranov, Anton. Stability of the bases and frames reproducing kernels in model spaces. Annales de l'Institut Fourier, Tome 55 (2005) pp. 2399-2422. doi : 10.5802/aif.2165. http://gdmltest.u-ga.fr/item/AIF_2005__55_7_2399_0/
[1] Radial limits and invariant subspaces, Amer. J. Math., Tome 92 (1970) no. 2, pp. 332-342 | Article | MR 262511 | Zbl 0197.39202
[2] Invariant subspaces of shift operators. An axiomatic approach, J. Soviet Math., Tome 22 (1983), pp. 1695-1708 (Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 113 (1981), 7-26; English transl.) | Article | Zbl 0517.47019
[3] A simple proof of the Volberg-Treil theorem on the embedding of coinvariant subspaces of the shift operator, J. Math. Sci., Tome 5 (1997) no. 2, pp. 1773-1778 (Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 217 (1994), 26-35; English transl.) | Article | MR 1327512 | Zbl 0907.47001
[4] Embedding theorems for coinvariant subspaces of the shift operator. II, J. Math. Sci., Tome 110 (2002) no. 5, pp. 2907-2929 (Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 262 (1999), 5-48; English transl.) | Article | MR 1734326 | Zbl 1060.30043
[5] The Bernstein inequality in the de Branges spaces and embedding theorems, Amer. Math. Soc., Ser. 2, Tome 209 (2003), pp. 21-49 (Proc. St. Petersburg Math. Soc., 9 (2001), 23-53; English transl.) | MR 2018371 | Zbl 1044.30012
[6] Weighted Bernstein-type inequalities and embedding theorems for shift-coinvariant subspaces, Algebra i Analiz, Tome 15 (2003) no. 5, pp. 138-168 (English transl.: St. Petersburg Math. J., 15 (2004), 5, 733-752) | MR 2068792 | Zbl 1070.47021
[7] Bernstein-type inequalities for shift-coinvariant subspaces and their applications to Carleson embeddings, J. Funct. Anal., Tome 223 (2005) no. 1, pp. 116-146 | Article | MR 2139883 | Zbl 02183823
[8] Geometric properties of projections of reproducing kernels on -invariant subspaces of , J. Funct. Anal., Tome 161 (1999) no. 2, pp. 397-417 | Article | MR 1674647 | Zbl 0939.30005
[9] Sharp extensions of Bernstein's inequality to rational spaces, Mathematika, Tome 43 (1996) no. 2, pp. 413-423 | Article | MR 1433285 | Zbl 0869.41010
[10] Hilbert spaces of entire functions, Prentice Hall, Englewood Cliffs (NJ) (1968) | MR 229011 | Zbl 0157.43301
[11] One-dimensional perturbations of restricted shifts, J. Anal. Math., Tome 25 (1972), pp. 169-191 | Article | MR 301534 | Zbl 0252.47010
[12] Radial limits and star invariant subspaces of bounded mean oscillation, Amer. J. Math., Tome 108 (1986) no. 3, pp. 719-749 | Article | MR 844637 | Zbl 0607.30034
[13] Carleson measures and operators on star-invariant subspaces, J. Oper. Theory, Tome 15 (1986) no. 1, pp. 181-202 | MR 816238 | Zbl 0615.47025
[14] On fractional derivatives and star invariant subspaces, Michigan Math. J., Tome 34 (1987) no. 3, pp. 391-406 | Article | MR 911813 | Zbl 0629.30037
[15] Entire functions of exponential type and model subspaces in , J. Math. Sci., Tome 71 (1994) no. 1, pp. 2222-2233 (Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 190 (1991), 81-100; English transl.) | Article | MR 1111913 | Zbl 0827.30020
[16] Smooth functions in the range of a Hankel operator, Indiana Univ. Math. J., Tome 43 (1994), pp. 805-838 | Article | MR 1305948 | Zbl 0821.30026
[17] Differentiation in star-invariant subspaces I, II, J. Funct. Anal., Tome 192 (2002) no. 2, pp. 364-409 | Article | MR 1923406 | Zbl 1011.47005
[18] Bases of reproducing kernels in model spaces, J. Oper. Theory, Tome 46 (2001) no. 3 (suppl.), pp. 517-543 | MR 1897152 | Zbl 0995.46021
[19] Complétude des noyaux reproduisants dans les espaces modèles, Ann. Inst. Fourier (Grenoble), Tome 52 (2002) no. 2, pp. 661-686 | Article | Numdam | MR 1906486 | Zbl 1032.46040
[20] Unconditional bases of exponentials and of reproducing kernels, Lecture Notes in Math., Tome 864 (1981), pp. 214-335 | Article | MR 643384 | Zbl 0466.46018
[21] The exact value of the Paley-Wiener constant, Sov. Math. Dokl., Tome 5 (1964), pp. 559-561 (Dokl. Akad. Nauk SSSR, 155 (1964), 1253-1254; English transl.) | MR 162088 | Zbl 0196.42602
[22] An estimate of the derivative of a meromorphic function on the boundary of domain, Sov. Math. Dokl., Tome 15 (1974) no. 3, pp. 831-834 | MR 352468 | Zbl 0299.30028
[23] Complete interpolating sequences for Paley-Wiener spaces and Muckenhoupt's () condition, Rev. Mat. Iberoamericana, Tome 13 (1997) no. 2, pp. 361-376 | MR 1617649 | Zbl 0918.42003
[24] Treatise on the shift operator, Springer-Verlag, Berlin-Heidelberg (1986) | MR 827223 | Zbl 0587.47036
[25] Operators, functions, and systems: an easy reading. Vol. 1, Hardy, Hankel, and Toeplitz, AMS, Providence, RI (Mathematical Surveys and Monographs) Tome 92 (2002) | MR 1864396 | Zbl 1007.47001
[26] Operators, functions, and systems: an easy reading. Vol. 2, Model operators and systems, AMS, Providence, RI (Mathematical Surveys and Monographs) Tome 93 (2002) | MR 1892647 | Zbl 1007.47002
[27] Fourier frames, Ann. of Math., Tome 155 (2002) no. 3, pp. 789-806 ((2)) | Article | MR 1923965 | Zbl 1015.42023
[28] On the connection between exponential bases and certain related sequences in , J. Funct. Anal., Tome 130 (1995) no. 1, pp. 131-160 | Article | MR 1331980 | Zbl 0872.46006
[29] Embedding theorems for invariant subspaces of the inverse shift operator, J. Soviet Math., Tome 42 (1988) no. 2, pp. 1562-1572 (Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 149 (1986), 38-51; English transl.) | Article | MR 849293 | Zbl 0654.30027
[30] An Introduction to Nonharmonic Fourier Series, Academic Press, New-York (1980) | MR 591684 | Zbl 0493.42001