Nous construisons une algèbre nommée adélique -algèbre puis, nous construisons une représentation bosonique naturelle. Nous montrons ensuite que les points des espaces de Calogero-Moser sont en correspondance biunivoque avec les fonctions tau en cette représentation.
We introduce a Lie algebra, which we call adelic -algebra. Then we construct a natural bosonic representation and show that the points of the Calogero-Moser spaces are in 1:1 correspondence with the tau-functions in this representation.
@article{AIF_2005__55_6_2069_0, author = {Horozov, Emil}, title = {Calogero-Moser spaces and an adelic $W$-algebra}, journal = {Annales de l'Institut Fourier}, volume = {55}, year = {2005}, pages = {2069-2090}, doi = {10.5802/aif.2152}, mrnumber = {2187946}, zbl = {02230068}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2005__55_6_2069_0} }
Horozov, Emil. Calogero-Moser spaces and an adelic $W$-algebra. Annales de l'Institut Fourier, Tome 55 (2005) pp. 2069-2090. doi : 10.5802/aif.2152. http://gdmltest.u-ga.fr/item/AIF_2005__55_6_2069_0/
[1] On a class of polynomials connected with the Korteweg-de Vries equation, Commun. Math. Phys., Tome 61 (1978), pp. 1-30 | Article | MR 501106 | Zbl 0428.35067
[2] Rational and elliptic solutions to the Korteweg-de Vries equation and related many-body problem, Comm. Pure Appl. Math., Tome 30 (1977), pp. 95-148 | Article | MR 649926 | Zbl 0338.35024
[3] A Lax representation for the vertex operator and the central extension, Commun. Math. Phys., Tome 171 (1995), pp. 547-588 | Article | MR 1346172 | Zbl 0839.35116
[4] A QFT approach to , New Trends in Quantum Field Theory, Proc. of the 1995 Razlog (Bulgaria) Workshop, Heron Press, Sofia (1996), pp. 147-158
[5] Tau-functions as highest weight vectors for algebra, J. Phys. A. Math. Gen., Tome 29 (1996), pp. 5565-5573 | Article | MR 1419041 | Zbl 0906.17018
[6] Bäcklund-Darboux transformations in Sato's Grassmannian, Serdica Math. J., Tome 4 (1996) | MR 1483606 | Zbl 0934.37016
[7] Bispectral algebras of commuting ordinary differential operators, Comm. Mat. Phys., Tome 190 (1997), pp. 331-373 | Article | MR 1489575 | Zbl 0912.34065
[8] Highest weight modules over , and the bispectral problem, Duke Math. J., Tome 93 (1998), pp. 41-72 | Article | MR 1620079 | Zbl 0983.17015
[9] Automorphisms and ideals of the Weyl algebra, Math. Ann., Tome 318 (2000) no. 1, pp. 127-147 | Article | MR 1785579 | Zbl 0983.16021
[10] Ideal classes of the Weyl algebra and noncommutative projective geometry (2001) (arXiv.math.AG/0104248, http://arxiv.org/abs/math.AG/0104248) | Zbl 1055.16030
[11] Right ideals in rings of differential operators, J. Algebra, Tome 167 (1994), pp. 116-141 | Article | MR 1282820 | Zbl 0824.16022
[12] Solution of the one-dimensional -body problems with quadratic and/or inversely quadratic pair potentials, J. Math. Phys., Tome 12 (1971), pp. 419-436 | Article | MR 280103 | Zbl 1002.70558
[13] Transformation groups for soliton equations, Proc. RIMS Symp., Nonlinear integrable systems - Classical and Quantum theory, (Kyoto 1981), Singapore: World Scientific (1983), pp. 39-111 | Zbl 0571.35098
[14] Soliton equations and integrable systems, Singapore: World Scientific (1991) | MR 1147643 | Zbl 0753.35075
[15] Differential equations in the spectral parameter, Commun. Math. Phys., Tome 103 (1986), pp. 177-240 | Article | MR 826863 | Zbl 0625.34007
[16] Master-symmetries, higher order time-dependent symmetries and conserved densities of nonlinear evolution equations, Progr. Theor. Phys., Tome 70 (1983) no. 6, pp. 1508-1522 | Article | MR 734645 | Zbl 01662637
[17] On the symmetries of the integrable system, Modern development of the Soliton theory (1992)
[18] The limited angle reconstruction problem in computer tomography, AMS (Proc. Symp. Appl. Math.) Tome 27 (1982), pp. 43-61 | Zbl 0536.65094
[19] Some functions that generalize the Krall-Laguerre polynomials, J. Comp. Appl. Math., Tome 106 (1999) no. 2, pp. 271-297 | Article | MR 1696411 | Zbl 0926.33007
[20] Discrete bispectral Darboux transformations from Jacobi operators (2000) (arXiv.mat.CA/0012191, http://arxiv.org/abs/math.CA/0012191) | Zbl 1051.39020
[21] Commutative rings of difference operators and an adelic flag manifold, Int. Math. Res. Notices, Tome 6 (2000), pp. 281-323 | MR 1749073 | Zbl 0984.37078
[22] Dual algebras of differential operators, in: Kowalevski property (Montréal), CRM Proc. Lecture Notes, Surveys from Kowalevski Workshop on Mathematical methods of Regular Dynamics, Leeds, April 2000 (2002) no. Amer. Math. Soc. Providence | MR 1916779 | Zbl 1037.47030
[23] The Weyl algebra, bispectral operators and dynamics of poles in integrable systems, Reg. \& Chaotic Dynamics, Tome 7 (2002) no. 4, pp. 399-424 | Article | MR 1957273 | Zbl 1034.34100
[24] Algèbres commutatives d'opérateurs aux -differences et systèmes de Calogero-Moser, C. R. Sci. Paris, Série I, Tome 329 (1999), pp. 877-882 | MR 1728001 | Zbl 0947.39010
[25] Hamiltonian group actions and dynamical systems of Calogero type, Comm. Pure Appl. Math., Tome 31 (1978), pp. 481-507 | Article | MR 478225 | Zbl 0368.58008
[26] On Rational solutions of Kadomtsev-Petviashvily equation and integrable systems of particles on the line, Funct. Anal. Appl., Tome 12 (1978) no. 1, pp. 76-78 | Zbl 0408.70010
[27] Spin and wedge representations of infinite-dimensional Lie algebras and groups, Proc. Natl. Acad. Sci. USA, Tome 78 (1981), pp. 3308-3312 | Article | MR 619827 | Zbl 0469.22016
[28] Quasifinite highest weight modules over the Lie algebra of differential operators on the circle, Commun. Math. Phys., Tome 9308153 (1993) no. 157, pp. 429-457 | MR 1243706 | Zbl 0826.17027
[29] Bombay lectures on highest weight representations of infinite dimensional Lie algebras, Singapore: World Scientific, Adv. Ser. Math. Phys., Tome 2 (1987) | Zbl 0668.17012
[30] Bispectral KP solutions and linearization of Calogero-Moser particle systems, Commun. Math. Phys., Tome 172 (1995), pp. 427-448 | Article | MR 1350415 | Zbl 0842.58047
[31] Three integrable Hamiltonian systems connected with isospectral deformations, Adv. Math., Tome 16 (1975), pp. 197-220 | Article | MR 375869 | Zbl 0303.34019
[32] Vertex operators, -problem, symmetries, variational identities and Hamiltonian formalism for integrable systems, Proc. Kiev Intern. Workshop, Plasma theory and non-linear and turbulent processes in Physics, Singapore: World Scientific (1988) | Zbl 0691.35075
[33] Additional symmetries for integrable and conformal algebra representation, Lett. Math. Phys., Tome 12 (1989), pp. 171-179 | Zbl 0618.35107
[34] Explicit formulas for the Airy and Bessel involutions in terms of Calogero-Moser pairs, The Bispectral Problem, CRM Proceedings and Lecture Notes, AMS (1998), pp. Providence | Zbl 0985.37081
[35] Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds, RIMS Kokyuroku, Tome 439 (1981), pp. 30-40 | Zbl 0507.58029
[36] Loop Groups and equations of KdV type, Publ. Math. IHES, Tome 61 (1985), pp. 5-65 | Numdam | MR 783348 | Zbl 0592.35112
[37] Integrable foundations of string theory, Singapore: World Scientific (CIMPA-Summer school at Sophia-Antipolis (1991), in: Lectures on integrable systems) (1994), pp. 163-267 | Zbl 0850.81049
[38] Bispectral commutative ordinary differential operators, J. Reine Angew. Math., Tome 442 (1993), pp. 177-204 | MR 1234841 | Zbl 0781.34051
[39] Collisions of Calogero-Moser particles and an adelic Grassmannian (with an appendix by I. G. Macdonald), Invent. Math., Tome 133 (1998), pp. 1-41 | MR 1626461 | Zbl 0906.35089