A l’aide de la théorie de Sato, on calcule la matrice spectrale de Stieltjes associée à une matrice de Jacobi doublement infinie, donnant lieu à une solution -soliton du réseau de Toda. On utilise ce résultat pour donner un développement explicite de la solution fondamentale de versions discrètes de l’équation de la chaleur, en termes d’une série des -déformations de Jackson des fonctions de Bessel. Pour les solitons dits de Askey-Wilson, ce développement se réduit à une somme finie.
The Stieltjes spectral matrix measure of the doubly infinite Jacobi matrix associated with a Toda -soliton is computed, using Sato theory. The result is used to give an explicit expansion of the fundamental solution of some discrete heat equations, in a series of Jackson’s -Bessel functions. For Askey-Wilson type solitons, this expansion reduces to a finite sum.
@article{AIF_2005__55_6_1765_0, author = {Haine, Luc}, title = {The spectral matrices of Toda solitons and the fundamental solution of some discrete heat equations}, journal = {Annales de l'Institut Fourier}, volume = {55}, year = {2005}, pages = {1765-1788}, doi = {10.5802/aif.2140}, mrnumber = {2187934}, zbl = {1078.35101}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2005__55_6_1765_0} }
Haine, Luc. The spectral matrices of Toda solitons and the fundamental solution of some discrete heat equations. Annales de l'Institut Fourier, Tome 55 (2005) pp. 1765-1788. doi : 10.5802/aif.2140. http://gdmltest.u-ga.fr/item/AIF_2005__55_6_1765_0/
[1] On a class of polynomials connected with the Korteweg-de Vries equation, Commun. Math. Phys., Tome 61 (1978), pp. 1-30 | Article | MR 501106 | Zbl 0428.35067
[2] Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc. (1985) no. 319 | MR 783216 | Zbl 0572.33012
[3] ``Huygens' principle and the bispectral problem, The Bispectral Problem, Amer. Math. Soc., Providence, RI (CRM Proc. Lecture Notes) Tome 14 (1998), pp. 11-30 | Zbl 0897.35043
[4] Hadamard's problem and Coxeter groups: new examples of Huygens' equations, Funktsional. Anal. i Prilozhen. 28 (1) (1994), 3-15 (Russian); English transl., Funct. Anal. Appl., Tome 28 (1994) no. 1, pp. 3-12 | MR 1275723 | Zbl 0845.35062
[5] Expansions in Eigenfunctions of Selfadjoint Operators, Amer. Math. Soc., Providence (Transl. Math. Monographs) Tome 17 (1968) | Zbl 0157.16601
[6] Integrability and Huygens' principle on symmetric spaces, Commun. Math. Phys., Tome 178 (1996), pp. 311-338 | Article | MR 1389907 | Zbl 0859.43004
[7] Multidimensional Baker-Akhiezer functions and Huygens' principle, Commun. Math. Phys., Tome 206 (1999), pp. 533-566 | Article | MR 1721907 | Zbl 0972.35110
[8] Toda flows with infinitely many variables, J. Funct. Anal., Tome 64 (1985), pp. 358-402 | Article | MR 813206 | Zbl 0615.58016
[9] Inverse scattering on the line, Comm. Pure Appl. Math., Tome 32 (1979), pp. 121-251 | Article | MR 512420 | Zbl 0388.34005
[10] Formulas for q-spherical functions using inverse scattering theory of reflectionless Jacobi operators, Commun. Math. Phys., Tome 210 (2000), pp. 335-369 | Article | MR 1776836 | Zbl 0976.33017
[11] Non-linear equations of Korteweg-de Vries type, finite-zone linear operators, and abelian varieties, Uspekhi Mat. Nauk. 31 (1) (1976), 55-136 (Russian); English transl., Russ. Math. Surveys, Tome 31 (1976) no. 1, pp. 59-146 | MR 427869 | Zbl 0346.35025
[12] Differential equations in the spectral parameter, Commun. Math. Phys., Tome 103 (1986), pp. 177-240 | Article | MR 826863 | Zbl 0625.34007
[13] On the Toda lattice II - Inverse scattering solution, Progr. Theor. Phys., Tome 51 (1974) no. 3, pp. 703-716 | MR 408648 | Zbl 0942.37505
[14] Basic hypergeometric series, Cambridge University Press, Encyclopedia of Mathematics and Its Applications, Tome 35 (1990) | MR 1052153 | Zbl 0695.33001
[15] Some bispectral musings, The Bispectral Problem , Amer. Math. Soc., Providence, RI (CRM Proc. Lecture Notes) Tome 14 (1998), pp. 31-45 | Zbl 0944.34062
[16] The bispectral problem: an overview, Special Functions 2000: Current Perspective and Future Directions, Kluwer (NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.) (2001), pp. 129-140 | Zbl 0999.47018
[17] Some functions that generalize the Askey-Wilson polynomials, Commun. Math. Phys., Tome 184 (1997), pp. 173-202 | Article | MR 1462504 | Zbl 0871.33009
[18] Associated polynomials, spectral matrices and the bispectral problem, Meth. Appl. Anal., Tome 6 (1999) no. 2, pp. 209-224 | MR 1803891 | Zbl 0956.33007
[19] Heat kernel expansions on the integers, Math. Phys. Anal. Geom., Tome 5 (2002), pp. 183-200 | Article | MR 1918052 | Zbl 0996.35077
[20] The q-hypergeometric equation, Askey-Wilson type solitons andrational curves with singularities, The Kowalevski Property, Amer. Math. Soc., Providence, RI (CRM Proc. Lecture Notes) Tome 32 (2002), pp. 69-91 | Zbl 1037.33015
[21] Commutative rings of difference operators and an adelic flag manifold, Internat. Math. Res. Notices, Tome 6 (2000), pp. 281-323 | MR 1749073 | Zbl 0984.37078
[22] A rational analogue of the Krall polynomials, J. Phys. A: Math. Gen., Tome 34 (2001), pp. 2445-2457 | Article | MR 1831308 | Zbl 0974.33011
[23] Askey-Wilson type functions, with bound states (The Ramanujan Journal (in press)) | Zbl 1100.33004
[24] The basic Bessel functions and polynomials, SIAM J. Math. Anal., Tome 12 (1981), pp. 454-468 | Article | MR 613323 | Zbl 0456.33005
[25] The application of basic numbers to Bessel's and Legendre's functions, Proc. London Math. Soc., Tome 2 (1905) no. 2, pp. 192-220 | JFM 35.0487.02
[26] Integration in Function Spaces and Some of Its Applications, Accademia Nazionale Dei Lincei Scuola Normale Superiore, Lezion, Pisa (1980) | MR 660839 | Zbl 0504.28015
[27] Algebraic curves and nonlinear difference equations, Uspekhi Mat. Nauk 33 (1978), 215-216 (Russian); English transl., Tome 33 (1978), p. 255-256 | MR 510681 | Zbl 0412.39002
[28] A method of generating classes of Huygens' operators, J. Math. Mech., Tome 17 (1967) no. 5, pp. 461-472 | MR 217409 | Zbl 0154.36002
[29] A solution of Hadamard's problem for a restricted class of operators, Proc. Amer. Math. Soc., Tome 19 (1968), pp. 981-988 | MR 231024 | Zbl 0159.14203
[30] The spectrum of Hill's equation, Inventiones Math., Tome 30 (1975), pp. 217-274 | Article | MR 397076 | Zbl 0319.34024
[31] The spectrum of difference operators and algebraic curves, Acta Math., Tome 143 (1979), pp. 93-154 | Article | MR 533894 | Zbl 0502.58032
[32] Bispectral rings of difference operators, Russ. Math. Surveys, Tome 54 (1999), p. 644-645 | Article | MR 1728657 | Zbl 0977.39012
[33] An explicit expression for the Korteweg-de Vries hierarchy, Z. Anal. Anwendungen, Tome 7 (1988), pp. 203-214 | MR 951118 | Zbl 0659.35089
[34] Loop groups and equations of KdV type, Inst. Hautes Études Sci. Publ. Math., Tome 61 (1985), pp. 5-65 | Article | Numdam | MR 783348 | Zbl 0592.35112
[35] Theory of Nonlinear Lattices, Springer, Berlin, Heidelberg, New-York,, Springer Series in Solid-State Sciences, Tome 20 (1981) | MR 618652 | Zbl 0465.70014
[36] Bispectral commutative ordinary differential operators, J. Reine Angew. Math., Tome 442 (1993), pp. 177-204 | MR 1234841 | Zbl 0781.34051