Nous cherchons la classe de fonctions associées à l’équation complexe .
We investigate the class of functions associated with the complex Hessian equation .
@article{AIF_2005__55_5_1735_0, author = {Blocki, Zbigniew}, title = {Weak solutions to the complex Hessian equation}, journal = {Annales de l'Institut Fourier}, volume = {55}, year = {2005}, pages = {1735-1756}, doi = {10.5802/aif.2137}, mrnumber = {2172278}, zbl = {1081.32023}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2005__55_5_1735_0} }
Blocki, Zbigniew. Weak solutions to the complex Hessian equation. Annales de l'Institut Fourier, Tome 55 (2005) pp. 1735-1756. doi : 10.5802/aif.2137. http://gdmltest.u-ga.fr/item/AIF_2005__55_5_1735_0/
[1] The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math., Tome 37 (1976), pp. 1-44 | Article | MR 445006 | Zbl 0315.31007
[2] A new capacity for plurisubharmonic functions, Acta Math., Tome 149 (1982), pp. 1-41 | Article | MR 674165 | Zbl 0547.32012
[3] Estimates for the complex Monge-Ampère operator, Bull. Pol. Acad. Sci., Tome 41 (1993), pp. 151-157 | MR 1414762 | Zbl 0795.32003
[4] On the definition of the Monge-Ampère operator in , Math. Ann., Tome 328 (2004), pp. 415-423 | Article | MR 2036329 | Zbl 1060.32018
[5] The domain of definition of the complex Monge-Ampère operator (preprint. Amer. J. Math. (to appear), http://www.im.uj.edu.pl/~blocki/publ/) | Zbl 1102.32018
[6] Another approach to Liouville theorem, Math. Nachr., Tome 107 (1982), pp. 253-262 | Article | MR 695751 | Zbl 0527.30013
[7] The Dirichlet problem for nonlinear second-order elliptic equations. II. Complex Monge-Ampère, and uniformly elliptic, equations, Comm. Pure Appl. Math., Tome 38 (1985), pp. 209-252 | Article | MR 780073 | Zbl 0598.35048
[8] The Dirichlet problem for nonlinear second order elliptic equations, III: Functions of the eigenvalues of the Hessian, Acta Math., Tome 155 (1985), pp. 261-301 | Article | MR 806416 | Zbl 0654.35031
[9] The general definition of the complex Monge-Ampère operator, Ann. Inst. Fourier, Tome 54 (2004), pp. 159-179 | Article | Numdam | MR 2069125 | Zbl 1065.32020
[10] Mesures de Monge-Ampère et mesures plurisousharmoniques, Math. Z., Tome 194 (1987), pp. 519-564 | Article | MR 881709 | Zbl 0595.32006
[11] Potential theory in several complex variables (1991) (preprint)
[12] Monge-Ampère operators, Lelong numbers and intersection theory Complex analysis and geometry, Tome Univ. Ser. Math., Plenum, New York (1993), pp. 115-193 | MR 1211880 | Zbl 0792.32006
[13] Complex Analytic and Differential Geometry (1997) (, http://www-fourier.ujf-grenoble.fr/~demailly/books.html)
[14] An inequality for hyperbolic polynomials, J. Math. Mech., Tome 8 (1959), pp. 957-965 | MR 113978 | Zbl 0090.01603
[15] The Christoffel-Minkowski problem I: Convexity of solutions of a Hessian equation, Invent. Math., Tome 151 (2003), pp. 553-577 | Article | MR 1961338 | Zbl 01965472
[16] The Dirichlet problem for degenerate Hessian equations, Comm. Partial Diff. Equations, Tome 29 (2004), pp. 219-235 | MR 2038151 | Zbl 02130233
[17] Geometric function theory and non-linear analysis, Clarendon Press (2001) | MR 1859913 | Zbl 1045.30011
[18] Pluripotential Theory, Clarendon Press (1991) | MR 1150978 | Zbl 0742.31001
[19] On the general notion of fully nonlinear second-order elliptic equations, Trans. Amer. Math. Soc., Tome 347 (1995), pp. 857-895 | Article | MR 1284912 | Zbl 0832.35042
[20] On the Dirichlet problems for symmetric function equations of the eigenvalues of the complex Hessian, Asian J. Math., Tome 8 (2004), pp. 87-106 | MR 2128299 | Zbl 02148243
[21] On the Dirichlet problem for Hessian equations, Acta Math., Tome 175 (1995), pp. 151-164 | Article | MR 1368245 | Zbl 0887.35061
[22] Hessian measures II, Ann. of Math., Tome 150 (1999), pp. 579-604 | Article | MR 1726702 | Zbl 0947.35055
[23] Continuity of envelopes of plurisubharmonic functions, J. Math. Mech., Tome 18 (1968), pp. 143-148 | MR 227465 | Zbl 0159.16002
[24] Volume and capacity of sublevel sets of a Lelong class of plurisubharmonic functions, Indiana Univ. Math. J., Tome 50 (2001), pp. 671-703 | MR 1857051 | Zbl 01679413