Meilleures approximations diophantiennes simultanées et théorème de Lévy
Chevallier, Nicolas
Annales de l'Institut Fourier, Tome 55 (2005), p. 1635-1657 / Harvested from Numdam

D'après le théorème de Lévy, les dénominateurs du développement en fraction continue d'un réel croissent presque sûrement à une vitesse au plus exponentielle. Nous étendons cette estimation aux meilleures approximations diophantiennes simultanées de formes linéaires.

According to Lévy's theorem, the denominators of the continued fraction expansion of a real number almost surely grow at most at the rate of a geometric series. We extend this estimate to best simultaneous Diophantine approximations to a set of linear forms.

Publié le : 2005-01-01
DOI : https://doi.org/10.5802/aif.2134
Classification:  11J13,  11J70,  22F30
Mots clés: approximations diophantiennes, théorème de Lévy, réseaux
@article{AIF_2005__55_5_1635_0,
     author = {Chevallier, Nicolas},
     title = {Meilleures approximations diophantiennes simultan\'ees et th\'eor\`eme de L\'evy},
     journal = {Annales de l'Institut Fourier},
     volume = {55},
     year = {2005},
     pages = {1635-1657},
     doi = {10.5802/aif.2134},
     mrnumber = {2172275},
     zbl = {1080.11052},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/AIF_2005__55_5_1635_0}
}
Chevallier, Nicolas. Meilleures approximations diophantiennes simultanées et théorème de Lévy. Annales de l'Institut Fourier, Tome 55 (2005) pp. 1635-1657. doi : 10.5802/aif.2134. http://gdmltest.u-ga.fr/item/AIF_2005__55_5_1635_0/

[Be, Ma] M.B. Bekka; M. Mayer Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces, London Mathematical Society, Lecture Note Series, Tome 269 (2000) | Zbl 0961.37001

[Br,Gu] A. Broise-Alamichel; Y. Guivarc'H Exposants caractéristiques de l'algorithme de Jacobi-Perron et de la transformation associée, Annales Institut Fourier, Tome 51 (2001) no. 3, pp. 565-686 | Article | Numdam | MR 1838461 | Zbl 1012.11060

[Br1] A.J. Brentjes A two-dimensional continued fraction algorithm for best approximations with an application in cubic fields, J. Reine Angew. Math., Tome 326 (1981), pp. 18-44 | MR 622343 | Zbl 0452.10034

[Br2] A.J. Brentjes Multi-dimensional continued fraction algorithms, Math. Centrum, Amsterdam, Mathematical Center Tracts, Tome 145 (1981) | Zbl 0474.10024

[Ca] J.W.S. Cassels An Introduction to Diophantine Approximation, Cambridge Univ. Press, Cambridge Tracts in Mathematics and Mathematical Physics, Tome 45 (1965) | Zbl 0077.04801

[Ch1] N. Chevallier Distances dans la suite des multiples d'un point du tore à deux dimensions, Acta Arith., Tome 74 (1996), pp. 47-59 | MR 1367577 | Zbl 0838.11052

[Ch2] N. Chevallier Meilleures approximations d'un élément du tore 𝕋 2 et géométrie de la suite des multiples de cet élément, Acta Arith., Tome 78 (1996), pp. 19-35 | MR 1424999 | Zbl 0863.11043

[Ch3] N. Chevallier Géométrie des suites de Kronecker, Manuscripta Math., Tome 94 (1997), pp. 231-241 | Article | MR 1473898 | Zbl 0893.11028

[Ch4] N. Chevallier Meilleures approximations diophantiennes d'un élément du tore 𝕋 d , Acta Arith., Tome 97 (2001), pp. 219-240 | Article | MR 1826002 | Zbl 0984.11033

[Ch5] N. Chevallier Meilleures approximations diophantiennes simultanées, Cahiers du séminaire de probabilités, Rennes (2002)

[Da] S.G. Dani Divergent trajectories of flows on homogeneous spaces and Diophantine approximation, J. Reine Angew. Math., Tome 359 (1985), pp. 55-89 | MR 794799 | Zbl 0578.22012

[Gr, Lag] D.J. Grabiner; J.C. Lagarias Cutting Sequences for Geodesic Flow on the Modular Surface and Continued Fractions, Monatsh, Tome 133 (2001), pp. 295-339 | MR 1915877 | Zbl 1040.37008

[Lag1] J.C. Lagarias; P. Ribenboim Some new results in simultaneous diophantine approximation, Proc. of the Queen's Number Theory Conference 1979 (Queen's Paper in Pure and Applied Math.) Tome 54 (1980), pp. 453-474 | Zbl 0453.10035

[Lag2] J.C. Lagarias Best simultaneous diophantine approximations I, Growth Rates of Best Approximations denominators, Trans. Amer. Math. Soc., Tome 272 (1982) no. 2, pp. 545-554 | MR 662052 | Zbl 0495.10021

[Lag3] J.C. Lagarias Best simultaneous diophantine approximations II, behavior of consecutive best approximations, Pacific Journal of Mathematics, Tome 102 (1982) no. 1, pp. 61-88 | MR 682045 | Zbl 0497.10025

[Lag4] J.C. Lagarias Best diophantine approximations to a set of linear forms, J. Austral. Math. Soc. Ser. A, Tome 34 (1983), pp. 114-122 | Article | MR 683183 | Zbl 0498.10019

[Lag5] J.C. Lagarias Geodesic multidimensional continued fractions, Proc. London Math. Soc., Tome 69 (1994) no. 3, pp. 464-488 | Article | MR 1289860 | Zbl 0813.11040

[Ma] G.A. Margulis; Wüstholz Diophantine Approximations, Lattices and flows on Homogeneous Spaces, A panorama of number theory or the view from Baker garden, Cambridge Univ. Press (2002), pp. 280-310 | Zbl 1036.11033

[Ro] C.A. Rogers The signature of the errors of some simultaneous Diophantine approximations, Proc. London Math. Soc., Tome 52 (1951), pp. 186-190 | MR 42465 | Zbl 0042.04601

[Schm] W.M. Schmidt A metrical theorem in diophantine approximation, Canadian J. Math., Tome 12 (1960), pp. 619-631 | Article | MR 118711 | Zbl 0097.26205

[Schw] F. Schweiger Multidimensional Continued Fractions, Oxford University Press, Oxford Science Publications (2000) | MR 2121855 | Zbl 0981.11029

[Sp] V.G. Sprind\V {Z}Uk Metric Theory of Diophantine Approximations, W.H. Winston Sons, Washington, C. D. (1979) | Zbl 0417.10044

[Wa] F.W. Warner Foundations of Differentiable Manifolds and Lie Groups, Springer-Verlag, G.T.M., Tome 94 (1983) | MR 722297 | Zbl 0516.58001