Nous proposons une définition du signe pour les corps quadratiques imaginaires. Nous donnons un exemple de telles fonctions et l'utilisons pour définir de nouveaux invariants qui sont racines des invariants de Ramachandra classiques. D'autre part nous introduisons les distributions ordinaires signées et calculons leur cohomologie à l'aide de la theéorie d'Anderson dite du double complexe.
We propose a definition of sign of imaginary quadratic fields. We give an example of such functions, and use it to define new invariants that are roots of the classical Ramachandra invariants. Also we introduce signed ordinary distributions and compute their signed cohomology by using Anderson's theory of double complex.
@article{AIF_2005__55_3_753_0, author = {Oukhaba, Hassan}, title = {Sign functions of imaginary quadratic fields and applications}, journal = {Annales de l'Institut Fourier}, volume = {55}, year = {2005}, pages = {753-772}, doi = {10.5802/aif.2113}, mrnumber = {2149402}, zbl = {02171524}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2005__55_3_753_0} }
Oukhaba, Hassan. Sign functions of imaginary quadratic fields and applications. Annales de l'Institut Fourier, Tome 55 (2005) pp. 753-772. doi : 10.5802/aif.2113. http://gdmltest.u-ga.fr/item/AIF_2005__55_3_753_0/
[1] A double complex for computing the sign-cohomology of the universal ordinary distribution, Recent progress in algebra (Taejon/Seoul, 1997), Amer. Math. Soc., Providence, RI, Tome 199 (1997), pp. 1-27 | Zbl 0939.11035
[2] Kronecker-Weber plus epsilon, Duke Math. J., Tome 114 (2002) no. 3, pp. 439-475 | Article | MR 1924570 | Zbl 1056.11060
[3] Epsilon extensions over global function fields, Manuscripta Math., Tome 110 (2003) no. 3, pp. 313-324 | Article | MR 1969003 | Zbl 01945277
[4] Sur la torsion de la distribution ordinaire universelle attachée à un corps de nombres, Manuscripta Math., Tome 106 (2001) no. 1, pp. 117-130 | Article | MR 1860983 | Zbl 1011.11076
[5] Cohomology of groups, Springer-Verlag, New-York, Graduate Texts in Mathematics, Tome 87 (1982) | MR 672956 | Zbl 0584.20036
[6] Explicit elliptic units, I, Duke Math. J., Tome 90 (1997) no. 3, pp. 495-521 | Article | MR 1480544 | Zbl 0898.11025
[7] Stickelberger elements in function fields, Compositio Math., Tome 55 (1985) no. 2, pp. 209-239 | Numdam | MR 795715 | Zbl 0569.12008
[8] A brief introduction to Drinfel'd modules, The arithmetic of function fields (Columbus, OH, 1991), Gruyter, Berlin (Ohio State Univ. Math. Res. Inst. Publ.) Tome 2 (1991), pp. 1-32 | Zbl 0793.11015
[9] Congruences satisfied by Stark units (2004) (PhD thesis, King's College, London)
[10] A course in homological algebra, Springer-Verlag, New York, Graduate Texts in Mathematics, Tome 4 (1971) | MR 346025 | Zbl 0238.18006
[11] The universal ordinary distribution, Bull. Soc. Math. France, Tome 107 (1979) no. 2, pp. 179-202 | Numdam | MR 545171 | Zbl 0409.12021
[12] Product formulae on elliptic curves, Invent. Math., Tome 117 (1994) no. 2, pp. 227-273 | MR 1273265 | Zbl 0834.14016
[13] Modular units, Springer-Verlag, New York, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematicsl Science], Tome 244 (1981) | MR 648603 | Zbl 0492.12002
[14] Index formulas for ramified elliptic units, Compositio Math., Tome 137 (2003) no. 1, pp. 1-22 | Article | MR 1981934 | Zbl 1045.11043
[15] Group cohomology of the universal ordinary distribution, J. Reine Angew. Math., Tome 537 (2001), pp. 1-32 | MR 1856256 | Zbl 1008.11042
[16] The universal norm distribution and Sinnott's index formula, Proc. Amer. Math. Soc., Tome 130 (2002) no. 8, pp. 2203-2213 | Article | MR 1896399 | Zbl 0997.11089
[17] Unités elliptiques, Bull. Soc. Math. France, Mémoires, Tome 36 (1973) | Numdam | MR 469889 | Zbl 0314.12006
[18] La racine 12-ième canonique , Birkhäuser, Boston (Séminaire de Théorie des Nombres, Paris, 1989-90) (1992), pp. 209-232 | Zbl 0751.11025
[19] Niedere Potenzen elliptischer Einheiten, Proceedings of the international conference on class numbers and fundamental units of algebraic number fields (Katata, 1986), Nagoya university (1986), pp. 67-88 | Zbl 0615.12013
[20] On the Stickelberger ideal and the circular units of a cyclotomic field, Ann. of Math. 2, Tome 108 (1978) no. 1, pp. 107-134 | MR 485778 | Zbl 0395.12014
[21] -functions at , IV, First derivatives at , Adv. in Math., Tome 35 (1980) no. 3, pp. 197-235 | Article | MR 563924 | Zbl 0475.12018
[22] Index-class number formulas over global function fields, Compositio Math., Tome 109 (1997) no. 1, pp. 49-66 | Article | MR 1473605 | Zbl 0902.11023
[23] On the index of cyclotomic units in characteristic and its applications, J. Number Theory, Tome 63 (1997) no. 2, pp. 302-324 | Article | MR 1443764 | Zbl 0896.11023
[24] Distributions on a global field, J. Number Theory, Tome 80 (2000) no. 1, pp. 154-167 | Article | MR 1735653 | Zbl 1005.11062