Soit une variété analytique complexe telle que toute application holomorphe d’une partie convexe compacte de l’espace euclidien à valeurs dans est limite uniforme d’applications entières à valeurs dans . On prouve que toute application holomorphe d’un sous ensemble analytique complexe fermé d’une variété de Stein à valeurs dans possède un prolongement holomorphe à à condition qu’elle admette un prolongement continu. On établit ensuite l’équivalence entre quatre propriétés de type Oka pour une variété analytique complexe.
Suppose that is a complex manifold such that any holomorphic map from a compact convex set in a Euclidean space to is a uniform limit of entire maps . We prove that a holomorphic map from a closed complex subvariety in a Stein manifold admits a holomorphic extension provided that it admits a continuous extension. We then establish the equivalence of four Oka-type properties of a complex manifold.
@article{AIF_2005__55_3_733_0, author = {Forstneric, Franc}, title = {Extending holomorphic mappings from subvarieties in Stein manifolds}, journal = {Annales de l'Institut Fourier}, volume = {55}, year = {2005}, pages = {733-751}, doi = {10.5802/aif.2112}, mrnumber = {2149401}, zbl = {1076.32003}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2005__55_3_733_0} }
Forstneric, Franc. Extending holomorphic mappings from subvarieties in Stein manifolds. Annales de l'Institut Fourier, Tome 55 (2005) pp. 733-751. doi : 10.5802/aif.2112. http://gdmltest.u-ga.fr/item/AIF_2005__55_3_733_0/
[1] Compact manifolds and hyperbolicity, Trans. Amer. Math. Soc., Tome 235 (1978), pp. 213-219 | MR 470252 | Zbl 0416.32013
[2] Algebraic surfaces holomorphically dominable by , Invent. Math., Tome 139 (2000), pp. 617-659 | Article | MR 1738063 | Zbl 0967.14025
[3] A defect relation for equidimensional holomorphic mappings between algebraic varieties, Ann. Math., Tome 95 (1972) no. 2, pp. 557-584 | MR 311935 | Zbl 0248.32018
[4] Complete locally pluripolar sets, J. Reine Angew. Math., Tome 412 (1990), pp. 108-112 | MR 1074376 | Zbl 0711.32008
[5] On the homology groups of Stein spaces and Runge pairs, J. Reine Angew. Math., Tome 371 (1986), pp. 216-220 | MR 859326 | Zbl 0587.32026
[6] Cohomology of -convex spaces in top degrees, Math. Z., Tome 204 (1990), pp. 283-295 | Article | MR 1055992 | Zbl 0682.32017
[7] Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann., Tome 140 (1960), pp. 94-123 | Article | MR 148939 | Zbl 0095.28004
[8] Intrinsic measures on complex manifolds and holomorphic mappings, American Mathematical Society, Providence, R.I., Memoirs of the Amer. Math. Soc., Tome 96 (1970) | MR 259165 | Zbl 0197.05901
[9] The Oka principle for sections of subelliptic submersions, Math. Z., Tome 241 (2002), pp. 527-551 | Article | MR 1938703 | Zbl 1023.32008
[10] Noncritical holomorphic functions on Stein manifolds, Acta Math., Tome 191 (2003), pp. 143-189 | Article | MR 2051397 | Zbl 1064.32021
[11] The homotopy principle in complex analysis: A survey, American Mathematical Society, Contemporary Mathematics, Tome 332 (2003) | MR 2016091 | Zbl 1048.32004
[12] Holomorphic submersions from Stein manifolds, Ann. Inst. Fourier, Tome 54 (2004) no. 6, pp. 1913-1942 | Article | Numdam | MR 2134229 | Zbl 02162446
[13] Runge approximation on convex sets implies Oka's property (2004) (Preprint, http://arxiv.org/abs/math.CV/0402278)
[14] Holomorphic flexibility properties of complex manifolds (2004) (Preprint, http://arxiv.org/abs/math.CV/0401439)
[15] Oka's principle for holomorphic fiber bundles with sprays, Math. Ann., Tome 317 (2000), pp. 117-154 | Article | MR 1760671 | Zbl 0964.32017
[16] Oka's principle for holomorphic submersions with sprays, Math. Ann., Tome 322 (2002), pp. 633-666 | Article | MR 1905108 | Zbl 1011.32006
[17] Extending holomorphic sections from complex subvarieties, Math. Z., Tome 236 (2001), pp. 43-68 | Article | MR 1812449 | Zbl 0968.32005
[18] Approximationssätze für holomorphe Funktionen mit Werten in komplexen Räumen, Math. Ann., Tome 133 (1957), pp. 139-159 | Article | MR 98197 | Zbl 0080.29201
[19] Holomorphe Funktionen mit Werten in komplexen Lieschen Gruppen, Math. Ann., Tome 133 (1957), pp. 450-472 | Article | MR 98198 | Zbl 0080.29202
[20] Analytische Faserungen über holomorph-vollständigen Räumen, Math. Ann., Tome 135 (1958), pp. 263-273 | Article | MR 98199 | Zbl 0081.07401
[21] Oka's principle for holomorphic sections of elliptic bundles, J. Amer. Math. Soc., Tome 2 (1989), pp. 851-897 | MR 1001851 | Zbl 0686.32012
[22] Analytic functions of several complex variables, Prentice--Hall, Englewood Cliffs (1965) | MR 180696 | Zbl 0141.08601
[23] Andreotti-Grauert Theory by Integral Formulas, Birkhäuser, Boston, Progress in Math., Tome 74 (1988) | MR 986248 | Zbl 0654.32001
[24] The Oka-Grauert principle without induction over the basis dimension, Math. Ann., Tome 311 (1998), pp. 71-93 | Article | MR 1624267 | Zbl 0955.32019
[25] An Introduction to Complex Analysis in Several Variables, Third ed. North Holland, Amsterdam (1990) | MR 1045639 | Zbl 0685.32001
[26] Intrinsic distances, measures and geometric function theory, Tome 82 (1976) no. Bull. Amer. Math. Soc., pp. 357-416 | MR 414940 | Zbl 0346.32031
[27] Meromorphic mappings onto compact complex spaces of general type, Invent. Math., Tome 31 (1975), pp. 7-16 | Article | MR 402127 | Zbl 0331.32020
[28] Holomorphic mappings of polydiscs into compact complex manifolds, J. Diff. Geom., Tome 6 (1971-72), pp. 33-46 | MR 301228 | Zbl 0227.32008
[29] Mapping cylinders and the Oka principle (2004) (Preprint, http://www.math.uwo.ca/ larusson/papers/)
[30] The Levi problem for complex spaces, Math. Ann., Tome 142 (1961), pp. 355-365 | Article | MR 148943 | Zbl 0106.28603
[31] Algebraische Varietäten und -vollständige komplexe Räume, Math. Z., Tome 200 (1989), pp. 547-581 | Article | MR 987586 | Zbl 0675.32014
[32] Stetige streng pseudoconvexe Funktionen, Math. Ann., Tome 175 (1968), pp. 257-286 | MR 222334 | Zbl 0153.15401
[33] Every Stein subvariety admits a Stein neighborhood, Invent. Math., Tome 38 (1976), pp. 89-100 | Article | MR 435447 | Zbl 0343.32014
[34] Elements of Homotopy Theory, Springer-Verlag, Graduate Texts in Math, Tome 61 (1978) | MR 516508 | Zbl 0406.55001