Nous généralisons ici la théorie des sous-groupes déstabilisants optimaux à un paramètre dans un cadre non algébrique : celui des actions holomorphes de groupes de Lie complexes réductifs sur une variété kählerienne de dimension finie (compacte ou non). Dans une seconde partie, nous montrons comment ces résultats peuvent s'étendre dans le cadre de la théorie de jauge, nous explorons la relation entre filtration de Harder-Narasimhan et vecteur déstabilisant optimal d'un objet non semistable.
We give here a generalization of the theory of optimal destabilizing 1-parameter subgroups to non algebraic complex geometry : we consider holomorphic actions of a complex reductive Lie group on a finite dimensional (possibly non compact) Kähler manifold. In a second part we show how these results may extend in the gauge theoretical framework and we discuss the relation between the Harder-Narasimhan filtration and the optimal detstabilizing vectors of a non semistable object.
@article{AIF_2005__55_3_1017_0, author = {Bruasse, Laurent and Teleman, Andrei}, title = {Harder-Narasimhan filtrations and optimal destabilizing vectors in complex geometry}, journal = {Annales de l'Institut Fourier}, volume = {55}, year = {2005}, pages = {1017-1053}, doi = {10.5802/aif.2120}, mrnumber = {2149409}, zbl = {1093.32009}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2005__55_3_1017_0} }
Bruasse, Laurent; Teleman, Andrei. Harder-Narasimhan filtrations and optimal destabilizing vectors in complex geometry. Annales de l'Institut Fourier, Tome 55 (2005) pp. 1017-1053. doi : 10.5802/aif.2120. http://gdmltest.u-ga.fr/item/AIF_2005__55_3_1017_0/
[1] Special metrics and stability for holomorphic bundles with global sections, J. Diff. Geom., Tome 33 (1991), pp. 169-213 | MR 1085139 | Zbl 0697.32014
[2] Harder-Narasimhan filtration on non Kähler manifolds, Int. Journal of Maths, Tome 12 (2001) no. 5, pp. 579-594 | Article | MR 1843867 | Zbl 01911891
[3] Filtration de Harder-Narasimhan pour des fibrés complexes ou des faisceaux sans-torsion, Ann. Inst. Fourier, Tome 53 (2003) no. 2, pp. 539-562 | Numdam | MR 1990006 | Zbl 01940704
[4] Optimal destabilizing vectors in some gauge theoretical moduli problems (2004) (IML, ref arxiv math.DG/0403264, http://arxiv.org/abs/math.DG/0403264)
[5] Harder-Narasimhan filtrations and optimal destabilizing vectors in gauge theory (2003) (article in preparation)
[6] On the cohomology groups of moduli spaces, Math. Ann., Tome 212 (1975), pp. 215-248 | Article | MR 364254 | Zbl 0324.14006
[7] Geometric invariant theory on Stein spaces, Math. Ann., Tome 289 (1991), pp. 631-662 | Article | MR 1103041 | Zbl 0728.32010
[8] Analytic Hilbert Quotient, MSRI, Cambridge University Press (Several complex variables) Tome 37 (1999), pp. 309-349 | Zbl 0959.32013
[9] Reduction of complex Hamiltonian G-spaces, Geometric and Functional Analysis, Tome 4 (1994) no. 3, pp. 288-297 | Article | MR 1274117 | Zbl 0816.53018
[10] Hyperkähler metrics and supersymmetry, Commun. Math. Phys., Tome 108 (1987), pp. 535-589 | Article | MR 877637 | Zbl 0612.53043
[11] Cohomology of quotients in symplectic and algebraic geometry, Mathematical Notes, Tome 31 (1984) no. Princeton University Press | MR 766741 | Zbl 0553.14020
[12] The universal Kobayashi-Hitchin correspondance (2003) (article in preparation)
[13] The theorem of Grauert-Mülich-Spindler, Math. Ann., Tome 255 (1981), pp. 317-333 | Article | MR 615853 | Zbl 0438.14015
[14] Geometric invariant theory, Springer-Verlag (1982) | MR 1304906 | Zbl 0504.14008
[15] A Hitchin-Kobayashi correspondence for Kähler fibrations, J. reine angew. Maths, Tome 528 (2000), pp. 41-80 | MR 1801657 | Zbl 1002.53057
[16] Master spaces for stable pairs, Topology, Tome 38 (1999) no. 1, pp. 117-139 | Article | MR 1644079 | Zbl 0981.14007
[17] Gauge theoretical equivariant Gromov-Witten invariants and the full Seiberg-Witten invariants of ruled surfaces, Comm. Math. Phys., Tome 227 (2002) no. 3, pp. 551-585 | Article | MR 1910831 | Zbl 1037.57025
[18] Seifert Manifold, Springer Verlag, Lectures Notes in Maths, Tome 291 (1972) | MR 426001 | Zbl 0263.57001
[19] Some remarks on the instability flag, Tôhoku Math. Journ., Tome 36 (1984), pp. 269-291 | Article | MR 742599 | Zbl 0567.14027
[20] The decomposition and specialization of algebraic families of vector bundles, Composito. Math., Tome 35 (1977), pp. 163-187 | Numdam | MR 498573 | Zbl 0371.14010
[21] Die Theorie der optimalen einparameteruntergruppen für instabile vektoren, Algebraische Transformationsgruppen und Invariantentheorie, Birkhäuser (DMV Seminar, 13 DMV Seminar) Tome 13 (1989), pp. 115-131 | Zbl 0753.14006
[22] Analytic stability, symplectic stability in non-algebraic complex geometry (2003) (preprint, math.CV/0309230, http://arxiv.org/abs/math.CV/0309230)