Dans cet article nous étudions l’existence d’un élément explicite dont le résidu torique est égal à un. On peut trouver un tel élément si et seulement si les polytopes associés sont essentiels. Nous réduisons ce problème à l’existence d’une collection de partitions des points du réseau dans les polytopes qui satisfont une certaine condition combinatoire. Nous utilisons cette description pour résoudre le problème pour et pour tout si les polytopes des diviseurs ont en commun un drapeau complet de faces. Ceci généralise des résultats antérieurs dans le cas où les diviseurs sont amples.
In this paper we investigate the problem of finding an explicit element whose toric residue is equal to one. Such an element is shown to exist if and only if the associated polytopes are essential. We reduce the problem to finding a collection of partitions of the lattice points in the polytopes satisfying a certain combinatorial property. We use this description to solve the problem when and for any when the polytopes of the divisors share a complete flag of faces. The latter generalizes earlier results when the divisors were all ample.
@article{AIF_2005__55_2_511_0, author = {Khetan, Amit and Soprounov, Ivan}, title = {Combinatorial construction of toric residues.}, journal = {Annales de l'Institut Fourier}, volume = {55}, year = {2005}, pages = {511-548}, doi = {10.5802/aif.2106}, mrnumber = {2147899}, zbl = {1077.14073}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2005__55_2_511_0} }
Khetan, Amit; Soprounov, Ivan. Combinatorial construction of toric residues.. Annales de l'Institut Fourier, Tome 55 (2005) pp. 511-548. doi : 10.5802/aif.2106. http://gdmltest.u-ga.fr/item/AIF_2005__55_2_511_0/
[1] A first course in combinatorial mathematics (2nd ed.), Oxford University Press (1989) | MR 1029023 | Zbl 0662.05002
[2] On the Hodge structure of projective hypersurfaces in toric varieties, Duke J. Math., Tome 75 (1994), pp. 293-338 | MR 1290195 | Zbl 0851.14021
[3] Toric Residues and Mirror Symmetry, Moscow Math. J., Tome 2 (2002) no. 3, pp. 435-475 | MR 1988969 | Zbl 1026.14016
[4] Residues in Toric Varieties, Compositio Math., Tome 108 (1997) no. 1, pp. 35-76 | Article | MR 1458757 | Zbl 0883.14029
[5] A global view of residues in the torus, J. Pure Appl. Algebra, Tome 117/118 (1997), pp. 119-144 | Article | MR 1457836 | Zbl 0899.14024
[6] Planar Configurations of Lattice Vectors and GKZ-Rational Toric Fourfolds in , J. Alg. Comb., Tome 19 (2004), pp. 47-65 | Article | MR 2056766 | Zbl 1054.33009
[7] Residues and Resultants, J. Math. Sci. Univ. Tokyo, Tome 5 (1998), pp. 119-148 | MR 1617074 | Zbl 0933.14033
[8] Computing multidimensional residues, Birkhäuser, Basel (Progress in Math.) (1996), pp. 135-164 | Zbl 0882.13020
[9] Rational hypergeometric functions, Compositio Math., Tome 128 (2001), pp. 217-240 | Article | MR 1850183 | Zbl 0990.33013
[10] Binomial Residues, Ann. Inst. Fourier, Tome 52 (2002), pp. 687-708 | Article | Numdam | MR 1907384 | Zbl 1015.32007
[11] Codimension theorems for complete toric varieties (to appear in Proc. AMS, math.AG/0310108) | MR 2160176 | Zbl 1083.14058 | Zbl 02188235
[12] The homogeneous coordinate ring of a toric variety, J. Alg. Geom., Tome 4 (1995), pp. 17-50 | MR 1299003 | Zbl 0846.14032
[13] Toric residues, Arkiv Mat., Tome 34 (1996), pp. 73-96 | Article | MR 1396624 | Zbl 0904.14029
[14] Macaulay style formulas for toric residues (to appear in Compositio Math., math.AG/0307154) | MR 2135285 | Zbl 1076.14081 | Zbl 02183037
[15] Introduction to Toric Varieties, Princeton Univ. Press, Princeton (1993) | MR 1234037 | Zbl 0813.14039
[16] Discriminants, resultants, and multidimensional determinants, Birkhäuser Boston, Inc., Boston (1994) | MR 1264417 | Zbl 0827.14036
[17] Toric geometry and Grothendieck residues, Moscow Math. J., Tome 2 (2002) no. 1, pp. 99-112 | MR 1900586 | Zbl 1044.14029
[18] Residues and tame symbols on toroidal varieties, Compositio Math., Tome 140 (2004) no. 6, pp. 1593-1613 | MR 2098404 | Zbl 1075.14052 | Zbl 02140866
[19] Toric residue and combinatorial degree, Trans. Amer. Math. Soc., Tome 357 (2005) no. 5, pp. 1963-1975 | Article | MR 2115085 | Zbl 1070.14048 | Zbl 02140161