Soit un groupe de Lie complexe, un sous-groupe complexe fermé de , et . Soit le radical et un sous-groupe semi-simple maximal de . La construction d’exemples de variétés non compactes homogènes d’un produit semi-direct , possédant une métrique kählérienne pas nécessairement invariante par , a suscité ce travail. L’orbite de dans est kählérienne. Donc est un sous-groupe algébrique de [4]. La présence d’une structure kählérienne sur devrait impliquer que l’action de sur la base de chaque fibration homogène soit algébrique. Des considérations naturelles permettent de se placer dans le cas d’un sous-groupe discret et d’une fibration homogène , où le sous-groupe est abélien et normal dans et la fibre est un groupe de Cousin. Une telle condition algébrique existe alors dans cet espace homogène , où et . Ceci signifie que l’existence d’un élément d’ordre infini appartenant à un sous-groupe semi-simple de est une obstruction à l’existence d’une métrique kählérienne sur . Ainsi kählérien implique que fini.
Let be a connected complex Lie group, a closed, complex subgroup of and . Let be the radical and a maximal semisimple subgroup of . Attempts to construct examples of noncompact manifolds homogeneous under a nontrivial semidirect product with a not necessarily -invariant Kähler metric motivated this paper. The -orbit in is Kähler. Thus is an algebraic subgroup of [4]. The Kähler assumption on ought to imply the -action on the base of any homogeneous fibration is algebraic too. Natural considerations allow a reduction to the case where is a discrete subgroup and there is a homogeneous fibration with an abelian, normal subgroup of and the fiber a Cousin group. An algebraic condition does hold in the homogeneous manifold , where and , namely, an element of infinite order lying in a semisimple subgroup of is an obstruction to the existence of a Kähler metric on . So Kähler implies finite.
@article{AIF_2005__55_1_229_0, author = {Gilligan, Bruce}, title = {An obstruction to homogeneous manifolds being K\"ahler}, journal = {Annales de l'Institut Fourier}, volume = {55}, year = {2005}, pages = {229-241}, doi = {10.5802/aif.2097}, mrnumber = {2141697}, zbl = {1070.32017}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2005__55_1_229_0} }
Gilligan, Bruce. An obstruction to homogeneous manifolds being Kähler. Annales de l'Institut Fourier, Tome 55 (2005) pp. 229-241. doi : 10.5802/aif.2097. http://gdmltest.u-ga.fr/item/AIF_2005__55_1_229_0/
[1] Toroidal groups. Line bundles, cohomology and quasi-abelian varieties, Springer-Verlag, Berlin, Lecture Notes in Mathematics, Tome 1759 (2001) | MR 1836462 | Zbl 0974.22004
[2] Invariant analytic hypersurfaces in complex nilpotent Lie groups, Ann. Global Anal. Geom., Tome 2 (1984), pp. 129-140 | Article | MR 777904 | Zbl 0576.32039
[3] On complex homogeneous spaces with top homology in codimension two, Canad. J. Math., Tome 46 (1994), pp. 897-919 | Article | MR 1295122 | Zbl 0812.32013
[4] Invariant plurisubharmonic functions and hypersurfaces on semi-simple complex Lie groups, Math. Ann., Tome 281 (1988), pp. 513-530 | Article | MR 954156 | Zbl 0653.32029
[5] Über kompakte homogene Kählersche Mannigfaltigkeiten, Math. Ann., Tome 145 (1962), pp. 429-439 | Article | MR 145557 | Zbl 0111.18001
[6] Sur les fonctions triplement périodiques de deux variables, Acta Math., Tome 33 (1910), pp. 105-232 | Article | JFM 41.0492.02
[7] The fundamental conjecture for homogeneous Kähler manifolds, Acta Math., Tome 161 (1988), pp. 23-70 | Article | MR 962095 | Zbl 0662.32025
[8] Invariant analytic hypersurfaces in complex Lie groups, Bull. Austral. Math. Soc., Tome 70 (2004), pp. 343-349 | Article | MR 2094781 | Zbl 02131450
[9] On non-compact complex nil-manifolds, Math. Ann., Tome 238 (1978), pp. 39-49 | Article | MR 510305 | Zbl 0405.32009
[10] Homogeneous complex manifolds with more than one end, Canad. J. Math., Tome 41 (1989), pp. 163-177 | Article | MR 996723 | Zbl 0667.32022
[11] On the algebra of representative functions of an analytic group, II, Amer. J. Math., Tome 86 (1964), pp. 869-887 | Article | MR 200392 | Zbl 0152.01301
[12] On holomorphically separable complex solvmanifolds, Ann. Inst. Fourier (Grenoble), Tome 36 (1986), pp. 57-65 | Article | Numdam | MR 865660 | Zbl 0571.32012
[13] On the discrete subgroups and homogeneous spaces of nilpotent Lie groups, Nagoya Math. J., Tome 2 (1951), pp. 95-110 | MR 41144 | Zbl 0045.31002
[14] Non-compact complex Lie groups without non-constant holomorphic functions, Minneapolis (Proceedings of the Conference on Complex Analysis) (1964), pp. 256-272 | Zbl 0144.07902
[15] Hyperflächen und Geradenbündel auf homogenen komplexen Mannigfaltigkeiten (1985) (Schr. Reihe Math. Inst. Univ. Münster, Serie 2, Heft, 36 (Thesis)) | MR 819480 | Zbl 0594.32032
[16] On the structure of complex solvmanifolds, J. Differential Geom., Tome 27 (1988), pp. 399-421 | MR 940112 | Zbl 0619.32021
[17] Recent results on homogeneous complex manifolds, Complex Analysis III, Berlin (Lecture Notes in Math.) Tome 1277 (1987), pp. 78-119 | Zbl 0627.32026
[18] Discrete subgroups of Lie groups, New York (1972) | MR 507234 | Zbl 0254.22005