Dans cet article, on obtient la généralisation de la théorie du système d’Euler pour les déformations galoisiennes. Si on applique ce résultat aux système d’Euler de Beilinson- Kato, on prouve une des inégalités prévues par la conjecture principale d’Iwasawa à deux variables. La clef de notre démonstration est l’utilisation de spécialisations non- arithmétiques. Notre méthode donne une nouvelle preuve plus simple de l’inégalité entre l’idéal caractéristique du groupe de Selmer d’une déformation galosienne et l’idéal associé à un système d’Euler, y compris dans le cas des -extensions déjà traité par Kato, Perrin-Riou, Rubin.
In this paper, we develop the Euler system theory for Galois deformations. By applying this theory to the Beilinson-Kato Euler system for Hida’s nearly ordinary modular deformations, we prove one of the inequalities predicted by the two-variable Iwasawa main conjecture. Our method of the proof of the Euler system theory is based on non-arithmetic specializations. This gives a new simplified proof of the inequality between the characteristic ideal of the Selmer group of a Galois deformation and the ideal associated to a Euler system even in the case of -extensions already treated by Kato, Perrin-Riou, Rubin.
@article{AIF_2005__55_1_113_0, author = {Ochiai, Tadashi}, title = {Euler system for Galois deformations}, journal = {Annales de l'Institut Fourier}, volume = {55}, year = {2005}, pages = {113-146}, doi = {10.5802/aif.2091}, mrnumber = {2141691}, zbl = {02162466}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2005__55_1_113_0} }
Ochiai, Tadashi. Euler system for Galois deformations. Annales de l'Institut Fourier, Tome 55 (2005) pp. 113-146. doi : 10.5802/aif.2091. http://gdmltest.u-ga.fr/item/AIF_2005__55_1_113_0/
[BK] -functions and Tamagawa numbers of motives, in The Grothendieck Festschrift I, Progress in Math., Tome 86 (1990), pp. 333-400 | MR 1086888 | Zbl 0768.14001
[Bo] Eléments de mathématique, Algèbre commutative, Chapitre 5--7 (1985) | MR 722608 | Zbl 0547.13002
[Bu] Périodes -adiques, Séminaire de Bures (1988) (Astérisque) Tome 223 (1994)
[De1] Formes modulaires et représentations -adiques, Springer Verlag, Séminaire Bourbaki 355, p. 139-172, Tome 179 (1969) | Numdam
[De2] Valeurs des fonctions et périodes d'intégrales, Amer. Math. Soc. (Proc. Sympos. Pure Math.) Tome XXXIII, Part 2 (1979), pp. 247-289 | Zbl 0449.10022
[Fl] A generalisation of Cassels-Tate pairing, J. reine angew. Math., Tome 412 (1990), pp. 113-127 | MR 1079004 | Zbl 0711.14001
[Gr1] Iwasawa theory for -adic representations, Advanced studies in Pure Math., Tome 17 (1987), pp. 97-137 | MR 1097613 | Zbl 0739.11045
[Gr2] Iwasawa theory for -adic deformations of motives, Proceedings of Symposia in Pure Math., Tome 55 (1994) no. 2, pp. 193-223 | MR 1265554 | Zbl 0819.11046
[GS] -adic -functions and -adic periods of modular forms, Invent. Math., Tome 111 (1993) no. 2, pp. 407-447 | MR 1198816 | Zbl 0778.11034
[Hi1] Galois representations into attached to ordinary cusp forms, Invent. Math., Tome 85 (1986), pp. 545-613 | Article | MR 848685 | Zbl 0612.10021
[Hi2] Elementary theory of -functions and Eisenstein series, Cambridge University Press, London Math. Society Student Texts, Tome 26 (1993) | MR 1216135 | Zbl 0942.11024
[Ka1] Lectures on the approach to Iwasawa theory for Hasse-Weil -functions via , I (Lecture Notes in Math.) Tome 1553 (1993), pp. 50-163 | Zbl 0815.11051
[Ka2] Series of lectures on Iwasawa main conjectures for modular elliptic curves (1998) (given at Tokyo University)
[Ka3] -adic Hodge theory and values of zeta functions of modular forms (Preprint) | MR 2104361 | Zbl 02123616
[Ka4] Euler systems, Iwasawa theory, and Selmer groups, Kodai Math. J., Tome 22 (1999) no. 3, pp. 313-372 | Article | MR 1727298 | Zbl 0993.11033
[Ki] On standard -adic -functions of families of elliptic cusp forms, in -adic monodromy and the Birch and Swinnerton-Dyer conjecture, p.81-110, Amer. Math. Soc., Contemp. Math., Tome 165 (1994) | MR 1279604 | Zbl 0841.11028
[Ma] Commutative ring theory, Cambridge University Press, Cambridge Studies in Advanced Mathematics, Tome 8 (1986) | MR 879273 | Zbl 0603.13001
[Mi] Arithmetic duality theorems,, Academic Press, Perspectives in Math. 1 (1986) | MR 881804 | Zbl 05081843
[MR] Kolyvagin systems (2001) (Preprint) | MR 2031496
[MT] Représentations galoisiennes, différentielles de Kähler et ``conjectures principales", Inst. Hautes Études Sci. Publ. Math., Tome 71 (1990), pp. 65-103 | Article | Numdam | MR 1079644 | Zbl 0744.11053
[MW1] Class fields of abelian extensions of , Invent. Math., Tome 76 (1984) no. 2, pp. 179-330 | Article | MR 742853 | Zbl 0545.12005
[MW2] On -adic analytic families of Galois representations, Compos. Math., Tome 59 (1986) no. 2, pp. 231-264 | Numdam | MR 860140 | Zbl 0654.12008
[NSW] Cohomology of number fields, Springer-Verlag, Berlin, Grundlehren Math. Wiss., Tome 323 (2000) | MR 1737196 | Zbl 0948.11001
[Oc1] Control theorem for Greenberg's Selmer groups for Galois deformations, J. Number Theory, Tome 88 (2001), pp. 59-85 | Article | MR 1825991 | Zbl 01598949
[Oc2] A generalization of the Coleman map for Hida deformations, Amer. J. Math., Tome 125 (2003), pp. 849-892 | Article | MR 1993743 | Zbl 1057.11048
[Oc3] On the two-variable Iwasawa Main conjecture for Hida deformations (in preparation)
[Pe] Systèmes d'Euler -adiques et théorie d'Iwasawa, Ann. Inst. Fourier, Tome 48 (1998) no. 5, pp. 1231-1307 | Article | Numdam | MR 1662231 | Zbl 0930.11078
[Ru1] The ``main conjectures" of Iwasawa theory for imaginary quadratic fields, Invent. Math., Tome 103 (1991) no. 1, pp. 25-68 | Article | MR 1079839 | Zbl 0737.11030
[Ru2] Euler systems, Annals Math. Studies, Tome 147 (2000) | MR 1749177 | Zbl 0977.11001
[Se] Cohomologie galoisienne, 5th ed., Springer-Verlag (Lecture Notes in Math.) Tome 5 (1994) | Zbl 0812.12002
[Ta] Relations between and Galois cohomology, Invent. Math., Tome 36 (1976), pp. 257-274 | Article | MR 429837 | Zbl 0359.12011
[Wi] On -adic representations associated to modular forms, Invent. Math., Tome 94 (1988), pp. 529-573 | Article | MR 969243 | Zbl 0664.10013