Nous étudions les variétés hermitiennes de spin avec courbure scalaire conforme positive sur lesquelles la première valeur propre de l'opérateur de Dolbeault est la plus petite possible. On montre qu'une telle surface est une surface réglée, ou bien une surface de Hopf. Nous donnons une classification complète des surfaces réglées avec cette propriété. Pour les surfaces de Hopf on obtient une classification partielle et quelques exemples.
We study the compact Hermitian spin surfaces with positive conformal scalar curvature on which the first eigenvalue of the Dolbeault operator of the spin structure is the smallest possible. We prove that such a surface is either a ruled surface or a Hopf surface. We give a complete classification of the ruled surfaces with this property. For the Hopf surfaces we obtain a partial classification and some examples
@article{AIF_2004__54_7_2437_0, author = {Alexandrov, Bogdan}, title = {Hermitian spin surfaces with small eigenvalues of the Dolbeault operator}, journal = {Annales de l'Institut Fourier}, volume = {54}, year = {2004}, pages = {2437-2453}, doi = {10.5802/aif.2085}, mrnumber = {2139699}, zbl = {1083.53067}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2004__54_7_2437_0} }
Alexandrov, Bogdan. Hermitian spin surfaces with small eigenvalues of the Dolbeault operator. Annales de l'Institut Fourier, Tome 54 (2004) pp. 2437-2453. doi : 10.5802/aif.2085. http://gdmltest.u-ga.fr/item/AIF_2004__54_7_2437_0/
[1] The Dolbeault operator on Hermitian spin surfaces, Ann. Inst. Fourier, Tome 51 (2001) no. 1, pp. 221-235 | Article | Numdam | MR 1821075 | Zbl 0987.53011
[2] Real Killing spinors and holonomy, Comm. Math. Phys, Tome 154 (1993), pp. 509-521 | Article | MR 1224089 | Zbl 0778.53037
[3] Compact Complex Surfaces, Springer-Verlag (1984) | MR 749574 | Zbl 0718.14023
[4] Complex algebraic surfaces, Cambridge University Press (1983) | MR 732439 | Zbl 0512.14020
[5] On the metric structure of non-Kähler complex surfaces, Math. Ann, Tome 317 (2000), pp. 1-40 | Article | MR 1760667 | Zbl 0988.32017
[6] Classification of surfaces of class with , Izv. Akad. Nauk SSSR, Ser. Mat,(in Russian), Tome 40 (1976), pp. 273-288 | MR 427325 | Zbl 0352.32020
[7] Der erste Eigenwert des Dirac--Operators einer kompakten, Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung, Math. Nachr, Tome 97 (1980), pp. 117-146 | Article | MR 600828 | Zbl 0462.53027
[8] The classification of,dimensional Kähler manifolds with small eigenvalue of the Dirac operator, Math. Ann, Tome 295 (1993), pp. 565-574 | Article | MR 1204838 | Zbl 0798.53065
[9] Le théorème de l'excentricité nulle, C. R. Acad. Sci. Paris Ser. A, Tome 285 (1977), pp. 387-390 | MR 470920 | Zbl 0362.53024
[10] Fibrés hermitiens à endomorphisme de Ricci non négatif, Bul. Soc. Math. France, Tome 105 (1977), pp. 113-140 | Numdam | MR 486672 | Zbl 0382.53045
[11] Surfaces de Hopf - variétés presque-complexes de dimension quatre, Géométrie riemannienne en dimension 4. Semin. Arthur Besse, Paris 1978/79 (1981), pp. 134-155 | Zbl 0513.53057
[12] La 1-forme de torsion d'une variété hermitienne compacte, Math. Ann, Tome 267 (1984), pp. 495-518 | Article | MR 742896 | Zbl 0523.53059
[13] Hermitian connections and Dirac operators, Bol. U. M. I. ser. VII, Tome XI-B, supl. 2 (1997), pp. 257-289 | MR 1456265 | Zbl 0876.53015
[14] Locally conformally Kähler metrics on Hopf surfaces, Ann. Inst. Fourier, Tome 48 (1998), pp. 1107-1127 | Article | Numdam | MR 1656010 | Zbl 0917.53025
[15] Spin and scalar curvature in the presence of a fundamental group I, Ann. Math, Tome 111 (1980), pp. 209-230 | Article | MR 569070 | Zbl 0445.53025
[16] Algebraic geometry, Springer-Verlag, Graduate Texts in Mathematics, Tome 52 (1977) | MR 463157 | Zbl 0367.14001
[17] Harmonic spinors, Adv. Math, Tome 14 (1974), pp. 1-55 | Article | MR 358873 | Zbl 0284.58016
[18] On Surfaces of Class , Invent. Math., Tome 24 (1974), pp. 269-310 | Article | MR 342734 | Zbl 0283.32019
[19] An estimation for the first eigenvalue of the Dirac operator on closed Kähler manifolds of positive scalar curvature, Ann. Glob. Anal. Geom, Tome 4 (1986), pp. 291-325 | Article | MR 910548 | Zbl 0629.53058
[20] The first eigenvalue of the Dirac operator on Kähler manifolds, J. Geom. Phys, Tome 7 (1990), pp. 447-468 | MR 1131907 | Zbl 0734.53050
[21] On the structure of compact analytic spaces I, Am. J. Math, Tome 86 (1964), pp. 751-798 | Article | MR 187255 | Zbl 0137.17501
[22] On the structure of compact analytic spaces II, Am. J. Math, Tome 88 (1966), pp. 682-721 | Article | MR 205280 | Zbl 0193.37701
[23] On the structure of compact analytic spaces III, Am. J. Math, Tome 90 (1969), pp. 55-83 | Article | MR 228019
[24] On the variation of almost-complex structure, Princeton Math. Ser, Tome 12 (1957), pp. 139-150 | MR 88775 | Zbl 0082.15402
[25] Spin geometry, Princeton Univ. Press, Princeton, Princeton Mathematical Series, Tome 38 (1989) | MR 1031992 | Zbl 0688.57001
[26] Holomorphic forms and holomorphic vector fields on compact generalized Hopf manifolds, Compos. Math, Tome 93 (1994) no. 1, pp. 1-22 | Numdam | MR 1286795 | Zbl 0811.53032
[27] On locally and globally conformally Kähler manifolds, Trans. Am. Math. Soc, Tome 262 (1980), pp. 533-542 | MR 586733 | Zbl 0446.53048
[27] On the curvature of compact Hermitian manifolds, Invent. Math, Tome 25 (1974), pp. 213-239 | Article | MR 382706 | Zbl 0299.53039
[28] Some curvature properties of complex surfaces, Ann. Mat. Pura Appl, Tome 132 (1982), pp. 231-255 | MR 696036 | Zbl 0512.53058