Nous considérons des systèmes dynamiques naturellement associés aux substitutions primitives et connus pour être uniquement ergodiques. Afin d'étudier plus précisément cette propriété, nous introduisons différentes notions de discrépance symbolique. Nous montrons comment les propriétés de répartition d'un tel système sont en partie déterminées par les matrices d'incidences associées à la substitution sous-jacente. Nous donnons également certaines applications de ces résultats à l'étude spectrale des systèmes dynamiques substitutifs.
We consider subshifts arising from primitive substitutions, which are known to be uniquely ergodic dynamical systems. In order to precise this point, we introduce a symbolic notion of discrepancy. We show how the distribution of such a subshift is in part ruled by the spectrum of the incidence matrices associated with the underlying substitution. We also give some applications of these results in connection with the spectral study of substitutive dynamical systems.
@article{AIF_2004__54_7_2201_0, author = {Adamczewski, Boris}, title = {Symbolic discrepancy and self-similar dynamics}, journal = {Annales de l'Institut Fourier}, volume = {54}, year = {2004}, pages = {2201-2234}, doi = {10.5802/aif.2079}, mrnumber = {2139693}, zbl = {1066.11032}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2004__54_7_2201_0} }
Adamczewski, Boris. Symbolic discrepancy and self-similar dynamics. Annales de l'Institut Fourier, Tome 54 (2004) pp. 2201-2234. doi : 10.5802/aif.2079. http://gdmltest.u-ga.fr/item/AIF_2004__54_7_2201_0/
[1] Codages de rotations et phénomènes d'autosimilarité, J. Théor. Nombres Bordeaux, Tome 14 (2002), pp. 351-386 | Article | Numdam | MR 2040682 | Zbl 02184588
[2] Répartitions des suites et substitutions, Acta Arith., Tome 112 (2004), pp. 1-22 | Article | MR 2040589 | Zbl 1060.11043
[3] An extension of Lagrange's theorem to interval exchange transformations over quadratic fields, J. Anal. Math., Tome 72 (1997), pp. 21-44 | Article | MR 1482988 | Zbl 0931.28013
[4] On sums of Rudin-Shapiro coefficients II, Pacific J. Math., Tome 107 (1983), pp. 39-69 | MR 701806 | Zbl 0469.10034
[5] A summation formula related to the binary digits, Invent. Math., Tome 73 (1983), pp. 107-115 | Article | MR 707350 | Zbl 0528.10006
[6] On the distribution of digits in arithmetic sequences, Seminar on number theory, 1982-1983 (Talence, 1982/1983), Université Bordeaux I, Talence, Tome exp. no 32 (1983), pp. 1-12 | Zbl 0529.10047
[7] Sequences, discrepancies and applications, Springer-Verlag, Berlin (1997) | MR 1470456 | Zbl 0877.11043
[8] Systèmes de numération et fonctions fractales relatifs aux substitutions, Theoret. Comput. Sci., Tome 65 (1989), pp. 153-169 | Article | MR 1020484 | Zbl 0679.10010
[9] Digital sum problems and substitutions on a finite alphabet, J. Number Theory, Tome 39 (1991), pp. 351-366 | Article | MR 1133561 | Zbl 0736.11007
[10] A characterization of substitutive sequences using return words, Discrete Math., Tome 179 (1998), pp. 89-101 | Article | MR 1489074 | Zbl 0895.68087
[11] Linearly recurrent subshifts have a finite number of non-periodic subshift factors, Ergodic Theory Dynam. Systems, Tome 20 (2000), pp. 1061-1078 | Article | MR 1779393 | Zbl 0965.37013
[12] Combinatorial and dynamical study of substitutions around the theorem of cobham, Dynamics and Randomness, Nonlinear Phenomena and Complex Systems, Kluwer Acad. Publications (2002), pp. 53-94 | Zbl 1038.11016
[13] Prime flows in topological dynamics, Israel J. Math., Tome 14 (1973), pp. 26-38 | Article | MR 321055 | Zbl 0264.54030
[14] Remarks on the remainder in Birkhoff's ergodic theorem, Acta Math. Acad. Sci. Hungar., Tome 28 (1976), pp. 389-395 | Article | MR 425076 | Zbl 0336.28005
[15] Geometric realizations of substitutions, Bull. Soc. Math. France, Tome 126 (1998), pp. 149-179 | Numdam | MR 1675970 | Zbl 0931.11004
[16] On a conjecture of Erdős and Szüsz related to uniform distribution , Acta Arith., Tome 12 (1966/1967), pp. 193-212 | MR 209253 | Zbl 0144.28902
[17] Uniform distribution of sequences, Wiley-Interscience, New York, Pure and Applied Mathematics (1974) | MR 419394 | Zbl 0281.10001
[18] An introduction to symbolic dynamics and coding, Cambridge University Press, Cambridge (1995) | MR 1369092 | Zbl 1106.37301 | Zbl 00822672
[19] Stricte ergodicité d'ensembles minimaux de substitution, C. R. Acad. Sci. Paris Sér. A, Tome 278 (1974), pp. 811-813 | MR 362276 | Zbl 0274.60028
[20] On a series of cosecants related to a problem in ergodic theory, Compos. Math., Tome 26 (1973), pp. 313-317 | Numdam | MR 325927 | Zbl 0269.10030
[21] Substitution dynamical systems - Spectral analysis, Springer-Verlag, Berlin, Lecture Notes in Mathematics, Tome 1294 (1987) | MR 924156 | Zbl 0642.28013
[22] Nombres algébriques et substitutions, Bull. Soc. Math. France, Tome 110 (1982), pp. 147-178 | Numdam | MR 667748 | Zbl 0522.10032
[23] Sequences defined by iterated morphisms, Sequences (Naples/Positano, 1988), Springer, New York (1990), pp. 275-286 | Zbl 0955.28501
[24] Représentation géométrique, combinatoire et arithmétique des systèmes substitutifs de type Pisot (2000) (Thèse de doctorat de l'Université de la Méditerranée)
[25] Gaps and steps for the sequence , Proc. Cambridge Philos. Soc., Tome 63 (1967), pp. 1115-1123 | Article | MR 217019 | Zbl 0178.04703
[26] On the spectral theory of adic transformations, Representation theory and dynamical systems, Amer. Math. Soc., Providence, RI (1992), pp. 217-230 | Zbl 0770.28012