Soit la variété Jacobienne de la courbe modulaire de Drinfeld sur , où est un idéal de . Soit une suite exacte de variétés abéliennes. Supposons que , comme sous-variété de , est stable sous l’action de l’algèbre de Hecker End . Nous donnons un critère suffisant pour l’exactitutde de la suite induite du groupe de composants connexe des modèles de Néron de ces variétés abéliennes sur . Ce critère est toujours satisfait si ou est de dimension . De plus, nous démontrons que la suite des parties de -torsion des groupes de composantes connexes est exacte pour tout nombre premier ne divisant pas . En particulier, cette suite est exacte quand .
Let be the Jacobian variety of the Drinfeld modular curve over , where is an ideal in . Let be an exact sequence of abelian varieties. Assume , as a subvariety of , is stable under the action of the Hecke algebra End . We give a criterion which is sufficient for the exactness of the induced sequence of component groups of the Néron models of these abelian varieties over . This criterion is always satisfied when either or is one-dimensional. Moreover, we prove that the sequence of component groups is always exact on -power torsion for any prime not dividing . In particular, the sequence is always exact when .
@article{AIF_2004__54_7_2163_0, author = {Papikian, Mihran}, title = {On component groups of Jacobians of Drinfeld modular curves}, journal = {Annales de l'Institut Fourier}, volume = {54}, year = {2004}, pages = {2163-2199}, doi = {10.5802/aif.2078}, mrnumber = {2139692}, zbl = {1071.11034}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2004__54_7_2163_0} }
Papikian, Mihran. On component groups of Jacobians of Drinfeld modular curves. Annales de l'Institut Fourier, Tome 54 (2004) pp. 2163-2199. doi : 10.5802/aif.2078. http://gdmltest.u-ga.fr/item/AIF_2004__54_7_2163_0/
[1] Degenerating abelian varieties, Topology, Tome 30 (1991), pp. 653-698 | Article | MR 1133878 | Zbl 0761.14015
[2] Formal and rigid geometry I, Math. Ann., Tome 295 (1993), pp. 291-317 | Article | MR 1202394 | Zbl 0808.14017
[3] Néron models, Springer (1990) | MR 1045822 | Zbl 0705.14001
[4] Irreducible components of rigid spaces, Ann. Inst. Fourier, Tome 49 (1999), pp. 473-541 | Article | Numdam | MR 1697371 | Zbl 0928.32011
[5] Component groups of purely toric quotients, Math. Research Letters, Tome 8 (2001), pp. 745-766 | MR 1879817 | Zbl 01744231
[6] Formes modulaires et représentations de , Springer (Lecture Notes in Math.) Tome 349 (1973), pp. 55-105 | Zbl 0271.10032
[7] Elliptic modules, Math. Sbornik, Tome 94 (1974), pp. 594-627 | MR 384707 | Zbl 0321.14014
[8] Optimal quotients of modular Jacobians, Math. Ann., Tome 327 (2003), pp. 429-458 | Article | MR 2021024 | Zbl 1061.11018
[9] Géométrie analytique rigide et applications, Birkhäuser (1981) | MR 644799 | Zbl 0479.14015
[10] Automorphe Formen über mit kleinem Führer, Abh. Math. Sem. Univ. Hamburg, Tome 55 (1985), pp. 111-146 | Article | MR 831522 | Zbl 0564.10026
[11] Über Drinfeld'sche Modulkurven vom Hecke-Typ, Comp. Math., Tome 57 (1986), pp. 219-236 | Numdam | MR 827352 | Zbl 0599.14032
[12] Analytic construction of Weil curves over function fields, J. Th. nombres Bordeaux, Tome 7 (1995), pp. 27-49 | Article | Numdam | MR 1413565 | Zbl 0846.11037
[13] Improper Eisenstein series on Bruhat-Tits trees, Manuscripta Math., Tome 86 (1995), pp. 367-391 | Article | MR 1323798 | Zbl 0884.11025
[14] On the cuspidal divisor group of a Drinfeld modular curve, Doc. Math. J. DMV, Tome 2 (1997), pp. 351-374 | MR 1487469 | Zbl 0895.11024
[15] Fundamental domains of some arithmetic groups over function fields, Internat. J. Math., Tome 6 (1995), pp. 689-708 | Article | MR 1351161 | Zbl 0858.11025
[16] Jacobians of Drinfeld modular curves, J. reine angew. Math., Tome 476 (1996), pp. 27-93 | Article | MR 1401696 | Zbl 0848.11029
[17] Automorphic forms on adele groups, Princeton Univ. Press (1975) | MR 379375 | Zbl 0329.10018
[18] Schottky groups and Mumford curves, Springer, Lecture Notes in Math., Tome 817 (1980) | MR 590243 | Zbl 0442.14009
[19] Groupes de type mulitplicatif: homomorphismes dans un schéma en groupes, SGA 3, Tome exposé IX (1970)
[20] Modèles de Néron et monodromie, SGA 7, Tome exposé IX (1972) | Zbl 0248.14006
[21] Étude cohomologique des faisceaux cohérents : EGA III, Publ. Math. IHÉS, Tome 11 (1962) | Numdam | Zbl 0118.36206
[21] Étude cohomologique des faisceaux cohérents : EGA III, Publ. Math., Inst. Hautes Étud. Sci., Tome 17 (1963) | Numdam | MR 163911 | Zbl 0122.16102
[22] Réalisation -adique de l'accouplement de monodromie d'après A. Grothendieck, Astérisque, Tome 196-197 (1991), pp. 27-44 | MR 1141455 | Zbl 0781.14011
[23] Modular curves and the Eisenstein ideal, Publ. Math. IHÉS, Tome 47 (1977), pp. 33-186 | Numdam | MR 488287 | Zbl 0394.14008
[24] Abelian varieties, Oxford Univ. Press (1970) | MR 282985 | Zbl 0326.14012
[25] An analytic construction of degenerating curves over complete local rings, Comp. Math., Tome 24 (1972), pp. 129-174 | Numdam | MR 352105 | Zbl 0228.14011
[26] Sur les revêtements de Schottky des courbes modulaires de Drinfeld, Arch. Math., Tome 66 (1996), pp. 378-387 | Article | MR 1383902 | Zbl 0853.14014
[27] Letter to J.-F. Mestre (1987) (available at xxx.lanl.gov)
[28] On the modular representations of arising from modular forms, Invent. Math., Tome 100 (1990), pp. 431-476 | Article | MR 1047143 | Zbl 0773.11039
[29] Trees, Springer (1980) | MR 607504 | Zbl 0548.20018
[30] The refined Eisenstein conjecture (1999) (Preprint)
[31] The Eisenstein quotient of the Jacobian variety of a Drinfeld modular curve, Publ. RIMS, Kyoto Univ., Tome 31 (1995), pp. 204-246 | Article | MR 1329480 | Zbl 1045.11510
[32] A note on -adic uniformization, Proc. Nederl. Akad. Wetensch., Tome 90 (1987), pp. 313-318 | MR 914089 | Zbl 0624.32018
[33] Discrete groups, Mumford curves and theta functions, Ann. Fac. Sci. Toulouse, Tome 1 (1992), pp. 399-438 | Article | Numdam | MR 1225666 | Zbl 0789.14020
[34] Modular parametrizations of elliptic curves, Canad. Math. Bull., Tome 28 (1985), pp. 372-384 | Article | MR 790959 | Zbl 0579.14027