On étudie le prolongement des applications holomorphes définies sur un ouvert de Hartogs et à valeurs dans une variété holomorphe . Pour les variétés kähleriennes compactes ainsi que pour certaines variétés compactes non kähleriennes le domaine maximal de prolongement de au dessus du polydisque est un domaine contenu dans . Pour de telles variétés compactes, on définit, dans cet article, un invariant Hex qui utilise la dimension de Hausdorff de l’ensemble singulier de et on étudie ses propriétés afin d’en déduire des informations sur la structure complexe de .
We study the extension problem of holomorphic maps of a Hartogs domain with values in a complex manifold . For compact Kähler manifolds as well as various non-Kähler manifolds, the maximal domain of extension for over is contained in a subdomain of . For such manifolds, we define, in this paper, an invariant Hex using the Hausdorff dimensions of the singular sets of ’s and study its properties to deduce informations on the complex structure of .
@article{AIF_2004__54_6_1827_0, author = {Kato, Masahide and Okada, Noboru}, title = {On holomorphic maps into compact non-K\"ahler manifolds}, journal = {Annales de l'Institut Fourier}, volume = {54}, year = {2004}, pages = {1827-1854}, doi = {10.5802/aif.2068}, mrnumber = {2134226}, zbl = {1077.32003}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2004__54_6_1827_0} }
Kato, Masahide; Okada, Noboru. On holomorphic maps into compact non-Kähler manifolds. Annales de l'Institut Fourier, Tome 54 (2004) pp. 1827-1854. doi : 10.5802/aif.2068. http://gdmltest.u-ga.fr/item/AIF_2004__54_6_1827_0/
[D] Enveloppes d'holomorphie et prolongements d'hypersurfaces, Séminaire Pierre Lelong 1975-76, Springer (Lec. Notes in Math) Tome 578 (1977), pp. 215-235 | Zbl 0372.32008
[DG] Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann, Tome 140 (1960), pp. 94-123 | MR 148939 | Zbl 0095.28004
[I1] The Hartogs-type extension theorem for the meromorphic maps into compact Kähler manifolds, Invent. math., Tome 109 (1992), pp. 47-54 | MR 1168365 | Zbl 0738.32008
[I2] Extension properties of meromorphic mappings with values in non-Kähler complex manifolds (2003) (preprint) | Zbl 1081.32010
[Kr] Prolongement d'applications holomorphes, Bull. Soc. math. France, Tome 118 (1990), pp. 229-240 | Numdam | MR 1087380 | Zbl 0718.32013
[Kt1] Factorization of compact complex 3-folds which admit certain projective structures, Tohoku Math. J., Tome 41 (1989), pp. 359-397 | MR 1007095 | Zbl 0686.32016
[Kt2] Examples on an Extension Problem of Holomorphic Maps and a Holomorphic 1-Dimensional Foliation, Tokyo J. Math, Tome 13 (1990), pp. 139-146 | MR 1059019 | Zbl 0718.32014
[M] Lectures on the theory of functions of several complex variables, Tata Inst. Fund. Research, Bombay (1958) | Zbl 0184.10903
[O] An example of holomorphic maps which cannot be extended meromorphically across a closed fractal subset, Mini-Conference on Algebraic Geometry (Saitama University, Urawa) (2000), pp. 42-53
[Sh] On the removal of singularities of analytic sets, Michigan Math. J, Tome 15 (1968), pp. 111-120 | MR 224865 | Zbl 0165.40503
[Si] Techniques of extension of analytic objects, Dekker, New York (1974) | MR 361154 | Zbl 0294.32007