Nous introduisons les concepts et modèles de base en résonance magnétique nucléaire (RMN). Nous décrivons une expérience d'imagerie simple ainsi que la réduction du problème d'excitation sélective à un problème de scattering inverse.
The basic concepts and models used in the study of nuclear magnetic resonance are introduced. A simple imaging experiment is described, as well as, the reduction of the problem of selective excitation to a classical problem in inverse scattering.
@article{AIF_2004__54_5_1697_0, author = {Epstein, Charles L.}, title = {Introduction to magnetic resonance imaging for mathematicians}, journal = {Annales de l'Institut Fourier}, volume = {54}, year = {2004}, pages = {1697-1716}, doi = {10.5802/aif.2063}, mrnumber = {2127862}, zbl = {02162438}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2004__54_5_1697_0} }
Epstein, Charles L. Introduction to magnetic resonance imaging for mathematicians. Annales de l'Institut Fourier, Tome 54 (2004) pp. 1697-1716. doi : 10.5802/aif.2063. http://gdmltest.u-ga.fr/item/AIF_2004__54_5_1697_0/
[AKNS] The inverse scattering transform-Fourier analysis for nonlinear problems, Studies Appl. Math. 53 (1974) p. 249-315 | MR 450815 | Zbl 0408.35068
, , & ,[Ab] Principles of Nuclear Magnetism, Clarendon Press, 1983
,[BC] Scattering and inverse scattering for first order systems, CPAM 37 (1984) p. 39-90 | MR 728266 | Zbl 0514.34021
& ,[Bl] Nuclear induction, Phys. Review 70 (1946) p. 460-474
,[Cal] Principles of nuclear magnetic resonance microscopy, Clarendon Press, 1993
,[Ca1] Exact solutions for selective-excitation pulses, J. Magn. Res. 94 (1991) p. 376-386
,[Ca2] Exact solutions for selective-excitation pulses. II. Excitation pulses with phase control, J. Magn. Res. 97 (1992) p. 65-78
,[Ep] Minimum power pulse synthesis via the inverse scattering transform, J. Magn. Res. 167 (2004) p. 185-210
,[EBW] Principles of nuclear magnetic resonance in one and two dimensions, Clarendon, 1987
, & ,[FT] Hamiltonian Methods in the Theory of Solitons, Springer Verlag, 1987 | MR 905674 | Zbl 0632.58004
& ,[Gr1] Trying to beat Heisenberg, Lecture Notes in Pure and Applied Math. vol. 122, Marcel Dekker, 1989, p. 657-666 | Zbl 0702.35199
,[Gr2] Concentrating a potential and its scattering transform for a discrete version of the Schrödinger and Zakharov-Shabat operators, Physica D 44 (1990) p. 92-98 | MR 1069673 | Zbl 0703.58053
,[GH] An exploration of the invertibility of the Bloch transform, Inverse Problems 2 (1986) p. 75-81 | MR 839981 | Zbl 0612.44005
& ,[Ha] Magnetic Resonance Imaging, Wiley-Liss, 1999
, , & ,[Ho1] The principle of reciprocity in signal strength calculations - A mathematical guide, Concepts Magn. Res. 12 (2000) p. 173-187
,[Ho2] Sensitivity and power deposition in a high field imaging experiment, JMRI 12 (2000) p. 46-67
,[Ma] Discrete Inverse Scattering Theory and NMR pulse design, PhD. Thesis, University of Pennsylvania, 2004
,[Me] Quantum Mechanics, 2nd ed., John Wiler \& Sons, 1970 | MR 260284 | Zbl 0102.42701
,[PRNM] Parameter relations for the Shinnar-Le Roux selective excitation pulse design algorithm, IEEE Trans. Med. Imaging 10 (1991) p. 53-65
, , & ,[MR] The inverse scattering transform and its use in the exact inversion of the Bloch equation for noninteracting spins, J. Magn. Res. 99 (1992) p. 118-138
& ,[SL1] The application of spinors to pulse synthesis and analysis, Magn. Res. in Med. 12 (1989) p. 93-98
& ,[SL2] Inversion of the Bloch equation, J. Chem. Phys. 98 (1993) p. 6121-6128
& ,[To] Bloch equations with diffusion terms, Phys. Review 104 (1956) p. 563-565
,