Soit une variété complexe de dimension avec une métrique hermitienne et une frontière , et soit l'opérateur autoadjoint -Neumann dans l'espace des formes. Si la forme de Levi a au moins valeurs propres positives ou au moins valeurs propres négatives en chaque point de , il est bien connu que dim et que l'image de est l'espace orthogonal. Ici nous démontrons que dim si l'image de est fermée et si la signature de la forme de Levi est en un point de . Le point de départ de la démonstration est une formule explicite pour quand est borné par deux sphères concentriques et . Alors a multiplicateurs indépendants ; ceci est vrai si et seulement si est borné par deux ellipsoïdes confocaux. Ces modèles conduisent à une asymptotique faible pour le noyau de la projection orthogonale sur quand l'image de est fermée, aux points de où la forme de Levi est définie négative . Des bornes grossières sont aussi données quand la signature est avec .
Let be a complex analytic manifold of dimension with a hermitian metric and boundary, and let be the self-adjoint -Neumann operator on the space of forms of type . If the Levi form of has everywhere at least positive or at least negative eigenvalues, it is well known that has finite dimension and that the range of is the orthogonal complement. In this paper it is proved that dim if the range of is closed and the Levi form of has signature at some boundary point. The starting point for the proof is an explicit determination of when is a spherical shell and . Then has independent multipliers; this is only true for shells bounded by two confocal ellipsoids. These models lead to asymptotics in a weak sense for the kernel of the orthogonal projection on when the range of is closed, at points on where the Levi form is negative definite, . Crude bounds are also given when the signature is with .
@article{AIF_2004__54_5_1305_0, author = {H\"ormander, Lars}, title = {The null space of the $\bar{\partial }$-Neumann operator}, journal = {Annales de l'Institut Fourier}, volume = {54}, year = {2004}, pages = {1305-1369}, doi = {10.5802/aif.2051}, mrnumber = {2127850}, zbl = {1083.32033}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2004__54_5_1305_0} }
Hörmander, Lars. The null space of the $\bar{\partial }$-Neumann operator. Annales de l'Institut Fourier, Tome 54 (2004) pp. 1305-1369. doi : 10.5802/aif.2051. http://gdmltest.u-ga.fr/item/AIF_2004__54_5_1305_0/
[BS] Sobolev estimates for the Lewy operator on weakly pseudo-convex boundaries, Math. Ann 274 (1986) p. 221-231 | MR 838466 | Zbl 0588.32023
& ,[BMS] Sur la singularité des noyaux de Bergman et de Szegö, Astérisque 34-35 (1976) p. 123-164 | Numdam | MR 590106 | Zbl 0344.32010
& ,[CM] Real hypersurfaces in complex manifolds, Acta Math 133 (1974) p. 219-271 | MR 425155 | Zbl 0302.32015
& ,[CS] Partial differential equations in several complex variables, AMS/IP Studies in advanced mathematics Vol. 19, Amer. Math. Soc, 2001 | MR 1800297 | Zbl 0963.32001
& ,[H1] estimates and existence theorems for the operator, Acta Math. 113 (1965) p. 89-152 | MR 179443 | Zbl 0158.11002
,[H2] The multinomial distribution and some Bergman kernels, Geometric analysis of PDE and several complex variables. Contemporary Mathematics Proceedings (to appear) | MR 2126474 | Zbl 1102.41028
,[H3] The analysis of linear partial differential operators I, Springer Verlag, 1983 | Zbl 0521.35001
,[K] Harmonic integrals on strongly pseudo-convex manifolds. I., Ann. of Math. 78 (1963) p. 112-148 | MR 153030 | Zbl 0161.09302
,[KN] Non-coercive boundary problems, Comm. Pure Appl. Math 18 (1965) p. 443-492 | MR 181815 | Zbl 0125.33302
& ,[KS] Complex Neumann problems, Ann. of Math 66 (1957) p. 89-140 | MR 87879 | Zbl 0099.30605
& ,[S1] Global solvability and regularity for on an annulus between two weakly pseudo-convex domains, Trans. Amer. Math. Soc 291 (1985) p. 255-267 | MR 797058 | Zbl 0594.35010
,[S2] estimates and existence theorems for the tangential Cauchy-Riemann complex, Invent. Math 82 (1985) p. 133-150 | MR 808113 | Zbl 0581.35057
,
[
[