Étant donné un corps quadratique imaginaire , notons son nombre de classes. Nous montrons qu’il existe une constante telle que pour assez grand, au moins des fonctions distinctes ne s’annulent pas au point central .
Let be an imaginary quadratic field, and denote by its class number. It is shown that there is an absolute constant such that for sufficiently large at least of the distinct -functions do not vanish at the central point .
@article{AIF_2004__54_4_831_0, author = {Blomer, Valentin}, title = {Non-vanishing of class group $L$-functions at the central point}, journal = {Annales de l'Institut Fourier}, volume = {54}, year = {2004}, pages = {831-847}, doi = {10.5802/aif.2035}, mrnumber = {2111013}, zbl = {1063.11040}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2004__54_4_831_0} }
Blomer, Valentin. Non-vanishing of class group $L$-functions at the central point. Annales de l'Institut Fourier, Tome 54 (2004) pp. 831-847. doi : 10.5802/aif.2035. http://gdmltest.u-ga.fr/item/AIF_2004__54_4_831_0/
[1] Eisenstein series on the metaplectic group and nonvanishing theorems for automorphic -functions and their derivatives, Ann. of Math (2), Tome 131 (1990), pp. 53-127 | MR 1038358 | Zbl 0699.10039
[2] On character sums and L-series, Proc. London Math. Soc (2), Tome 12 (1962), pp. 193-206 | MR 132733 | Zbl 0106.04004
[3] The nonvanishing of Rankin-Selberg zeta-functions at special points, Contemp. Math, Tome 53 (1986), pp. 51-95 | MR 853553 | Zbl 0595.10025
[4] Hyperbolic distribution problems and half-integral weight Maass forms, Invent. Math, Tome 112 (1988), pp. 73-90 | MR 931205 | Zbl 0628.10029
[5] Class group -functions, Duke Math. J, Tome 79 (1995), pp. 1-56 | MR 1340293 | Zbl 0838.11058
[6] Low-lying zeros of dihedral -functions, Duke Math. J, Tome 116 (2003), pp. 189-217 | MR 1953291 | Zbl 1028.11055
[7] The non-vanishing of central values of automorphic -functions and the Landau-Siegel zero, Isr. J. Math, Tome 120 (2000), pp. 155-177 | MR 1815374 | Zbl 0992.11037
[8] Zeros of zeta-functions and symmetry, Bull. AMS, Tome 36 (1999), pp. 1-26 | MR 1640151 | Zbl 0921.11047
[9] Mollification of the fourth moment of automorphic -functions and arithmetic applications, Invent. Math, Tome 142 (2000), pp. 95-151 | MR 1784797 | Zbl 1054.11026
[10] Non-vanishing of high derivatives of automorphic -functions at the center of the critical strip, J. Reine Angew. Math, Tome 526 (2000), pp. 1-34 | MR 1778299 | Zbl 1020.11033
[11] Mean values of derivatives of modular -series, Ann. of Math (2), Tome 133 (1991), pp. 447-475 | MR 1109350 | Zbl 0745.11032
[12] Non-vanishing of -functions and applications, Birkhäuser, Basel, Progress in Mathematics, Tome 157 (1997) | MR 1482805 | Zbl 0916.11001
[13] Averages over twisted elliptic -functions, Acta Arith, Tome 80 (1997), pp. 149-163 | MR 1450922 | Zbl 0878.11022
[14] Elementary methods in the theory of -functions II, Acta Arith, Tome 31 (1976), pp. 273-306 | MR 485730 | Zbl 0307.10041
[15] Nonvanishing of -functions for , Invent. Math, Tome 97 (1989), pp. 383-401 | MR 1001846 | Zbl 0677.10020
[16] On modular forms of half-integral weight, Ann of Math (2), Tome 97 (1973), pp. 440-481 | MR 332663 | Zbl 0266.10022
[17] Non-vanishing of quadratic Dirichlet -functions at , Ann. of Math (2), Tome 152 (2000), pp. 447-488 | Zbl 0964.11034
[18] Sur le coefficients de Fourier des formes modulaires de poids demi-entier, J. Math. Pures Appl., Tome 60 (1981), pp. 375-484 | MR 646366 | Zbl 0431.10015