A l’aide du calcul différentiel de Fox, on définit pour tout entier positif , une application sur le groupe d’homéotopie d’une surface de genre et de bord à une composante, qui coïncide avec le homomorphisme de Johnson- Morita quand on la restreint à un sous-groupe approprié. Ceci permet d’obtenir de façon très simple une extension homomorphe des deuxième et troisième homomorphismes de Johnson- Morita à tout le groupe
Using Fox differential calculus, for any positive integer , we construct a map on the mapping class group of a surface of genus with one boundary component, such that, when restricted to an appropriate subgroup, it coincides with the Johnson-Morita homomorphism. This allows us to construct very easily a homomorphic extension to of the second and third Johnson-Morita homomorphisms.
@article{AIF_2004__54_4_1073_0, author = {Perron, Bernard}, title = {Homomorphic extensions of Johnson homomorphisms via Fox calculus}, journal = {Annales de l'Institut Fourier}, volume = {54}, year = {2004}, pages = {1073-1106}, doi = {10.5802/aif.2044}, mrnumber = {2111022}, zbl = {02162420}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2004__54_4_1073_0} }
Perron, Bernard. Homomorphic extensions of Johnson homomorphisms via Fox calculus. Annales de l'Institut Fourier, Tome 54 (2004) pp. 1073-1106. doi : 10.5802/aif.2044. http://gdmltest.u-ga.fr/item/AIF_2004__54_4_1073_0/
[B] Braids, links and mapping class groups, Princeton Univ. Press, Princeton, Ann. of Math. Stud., Tome 82 (1974) | MR 375281 | Zbl 0305.57013
[Br] Cohomology of groups, Springer-Verlag, Graduate Texts in Math., Tome 87 (1982) | MR 672956 | Zbl 0584.20036
[C] Lectures at MSRI (1985)
[F] Free differential calculus I, Annals of Math., Tome 57 (1953), pp. 547-560 | MR 53938 | Zbl 0050.25602
[H] Generators of the mapping class group, Springer (Lecture Notes in Math.) Tome 722 (1979), pp. 44-47 | Zbl 0732.57004
[J1] An abelian quotient of the mapping class group , Math. Ann., Tome 249 (1980), pp. 225-242 | MR 579103 | Zbl 0409.57009
[J2] The structure of the Torelli group I, Annals of Math, Tome 118 (1983), pp. 423-442 | MR 727699 | Zbl 0549.57006
[J3] The structure of the Torelli group II, Topology, Tome 24 (1985), pp. 113-126 | MR 793178 | Zbl 0571.57009
[KMS] Combinatorial group theory, Interscience Publ., New York, Pure Appl. Math., Tome 13 (1966) | Zbl 0138.25604
[Mo1] Casson's invariant for homology 3-spheres and characteristic classes of surface bundles I, Topology, Tome 28 (1989), pp. 305-323 | MR 1014464 | Zbl 0684.57008
[Mo2] On the structure of the Torelli group and the Casson invariant, Topology, Tome 30 (1991), pp. 603-621 | MR 1133875 | Zbl 0747.57010
[Mo3] The extension of Johnson's homomorphism from the Torelli group to the mapping class group, Invent. Math., Tome 111 (1993), pp. 197-224 | MR 1193604 | Zbl 0787.57008
[Mo4] The structure of the mapping class group and characteristic classes of surface bundles, Mapping class groups and Moduli spaces of Riemann surfaces (Contemporary Math) Tome 150 (1993), pp. 303-315 | Zbl 0791.57018
[Mo5] Abelian quotients of subgroups of the mapping class group of surfaces, Duke Math J., Tome 70 (1993), pp. 699-726 | MR 1224104 | Zbl 0801.57011
[Pe] Mapping class group and the Casson invariant, Ann. Inst. Fourier, Tome 54 (2004) no. 4, pp. 1107-1138 | Numdam | MR 2111023 | Zbl 02162421
[Po] Two theorems on the mapping class group of surfaces, Proc. AMS, Tome 68 (1978), pp. 347-350 | MR 494115 | Zbl 0391.57009
[PV] Groupe de monodromie géométrique des singularités simples, Math. Ann, Tome 306 (1996), pp. 231-245 | MR 1411346 | Zbl 0863.32013
[S] On homeomorphisms of a 3-dimensional handlebody, Can. J. Math., Tome 29 (1977), pp. 111-124 | MR 433433 | Zbl 0339.57001
[Sa] Lectures on the topology of 3-manifolds. An introduction to the Casson Invariant, Berlin, New York, De Gruyter Text Book (1999) | MR 1712769 | Zbl 0932.57001