On donne, pour les domaines lisses bornés pseudoconvexes de , des conditions géométriques concernant le bord qui entraînent la compacité de l’opérateur -Neumann. Il est remarquable que la preuve de la compacité ne procède pas par verification des conditions suffisantes bien connues de type théorie du potentiel.
For smooth bounded pseudoconvex domains in , we provide geometric conditions on the boundary which imply compactness of the -Neumann operator. It is noteworthy that the proof of compactness does not proceed via verifying the known potential theoretic sufficient conditions.
@article{AIF_2004__54_3_699_0, author = {Straube, Emil}, title = {Geometric conditions which imply compactness of the ${\overline{\partial }}$-Neumann operator}, journal = {Annales de l'Institut Fourier}, volume = {54}, year = {2004}, pages = {699-710}, doi = {10.5802/aif.2030}, mrnumber = {2097419}, zbl = {1061.32028}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2004__54_3_699_0} }
Straube, Emil. Geometric conditions which imply compactness of the ${\overline{\partial }}$-Neumann operator. Annales de l'Institut Fourier, Tome 54 (2004) pp. 699-710. doi : 10.5802/aif.2030. http://gdmltest.u-ga.fr/item/AIF_2004__54_3_699_0/
[1] Small sets of infinite type are benign for the -Neumann problem, Proceedings of the American Math. Soc, Tome 103 (1988), pp. 569-578 | MR 943086 | Zbl 0652.32016
[2] Global regularity of the -Neumann problem: a survey of the -Sobolev theory, Several Complex Variables, Cambridge University Press (MSRI Publications) Tome 37 (1999) | Zbl 0967.32033
[3] Boundary behavior of holomorphic functions on weakly pseudoconvex domains (1978) (Princeton University Ph.D. Thesis) | Zbl 0484.32005
[4] Global regularity of the -Neumann problem, Complex Analysis of Several Variables (Proc. Symp. Pure Math.) Tome 41 (1984), pp. 39-49 | Zbl 0578.32031
[5] Subelliptic estimates for the -Neumann problem on pseudoconvex domains, Annals of Mathematics (2), Tome 126 (1987), pp. 131-191 | MR 898054 | Zbl 0627.32013
[6] Partial Differential Equations in Several Complex Variables, American Mathematical Society/International Press, Studies in Advanced Mathematics (2001) | MR 1800297 | Zbl 0963.32001
[7] Compactness in the -Neumann problem, magnetic Schrödinger operators, and the Aharonov--Bohm effect (2003) (preprint) | MR 2166176 | Zbl 1098.32020
[8] Several Complex Variables and the Geometry of Real Hypersurfaces, CRC Press, Boca Raton, FL, Studies in Advanced Mathematics (1993) | MR 1224231 | Zbl 0854.32001
[9] Regularité pour dans quelques domaines faiblement pseudo-convexes, Journal of Differential Geometry, Tome 13 (1978), pp. 559-576 | MR 570218 | Zbl 0435.35057
[10] The Neumann Problem for the Cauchy--Riemann Complex, Princeton University Press, Annals of Mathematics Studies, Tome 75 (1972) | MR 461588 | Zbl 0247.35093
[11] Compactness of the -Neumann problem on convex domains, Journal of Functional Analysis, Tome 159 (1998), pp. 629-641 | MR 1659575 | Zbl 0959.32042
[12] Compactness in the -Neumann problem, Complex Analysis and Geometry, Math. Research Inst. Publ., Ohio State Univ., Tome 9 (2001), pp. 141-160 | Zbl 1011.32025
[13] Semi-classical analysis of Schrödinger operators and compactness in the -Neumann problem, Journal of Math. Analysis and Applications, Tome 271 (2002) no. 1, pp. 267-282 | MR 1923760 | Zbl 01836752
[13] Semi-classical analysis of Schrödinger operators and compactness in the -Neumann problem. (correction), J. Math. Anal. Appl., Tome 280 (2003) no. 1, p. 195-196 | MR 1972203 | Zbl 01836752
[14] On the compactness of the -Neumann operator, Ann. Fac. Sci. Toulouse Math (6), Tome 9 (2000), pp. 415-432 | Numdam | MR 1842025 | Zbl 1017.32025
[15] A Hartogs domain with no analytic discs in the boundary for which the -Neumann problem is not compact (1997) (University of California Los Angeles Ph.D. Thesis)
[16] A sufficient condition for compactness of the -Neumann problem, Journal of Functional Analysis, Tome 195 (2002), pp. 190-205 | MR 1934357 | Zbl 1023.32029
[17] Une classe de domaines pseudoconvexes, Duke Math. Journal, Tome 55 (1987), pp. 299-319 | MR 894582 | Zbl 0622.32016
[18] Plurisubharmonic functions and subellipticity of the -Neumann problem on non-smooth domains, Mathematical Research Letters, Tome 4 (1997), pp. 459-467 | MR 1470417 | Zbl 0887.32005
[19] Weakly Differentiable Functions, Springer-Verlag, Graduate Texts in Mathematics, Tome 120 (1989) | MR 1014685 | Zbl 0692.46022