Cet article concerne les flots projectivement Anosov, dont les feuilletages stable et instable et sont lisses, sur une variété de Seifert . Nous prouvons que si l’un des feuilletages ou contient une feuille compacte, alors le flot se décompose en union finie de modèles définis sur et ayant pour bord les feuilles compactes. La variété est donc homeomorphe au tore . Dans la preuve, nous obtenons également un théorème qui classifie les feuilletages de codimension un sur les variétés de Seifert ayant des feuilles compactes qui sont des tores incompressibles.
This paper concerns projectively Anosov flows with smooth stable and unstable foliations and on a Seifert manifold . We show that if the foliation or contains a compact leaf, then the flow is decomposed into a finite union of models which are defined on and bounded by compact leaves, and therefore the manifold is homeomorphic to the 3-torus. In the proof, we also obtain a theorem which classifies codimension one foliations on Seifert manifolds with compact leaves which are incompressible tori.
@article{AIF_2004__54_2_481_0, author = {Noda, Takeo}, title = {Regular projectively Anosov flows with compact leaves}, journal = {Annales de l'Institut Fourier}, volume = {54}, year = {2004}, pages = {481-497}, doi = {10.5802/aif.2026}, zbl = {1058.57021}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2004__54_2_481_0} }
Noda, Takeo. Regular projectively Anosov flows with compact leaves. Annales de l'Institut Fourier, Tome 54 (2004) pp. 481-497. doi : 10.5802/aif.2026. http://gdmltest.u-ga.fr/item/AIF_2004__54_2_481_0/
[A] Classification of regular and non-degenerate projectively Anosov flows on three manifolds (Preprint) | Zbl 05128991
[Ba] Flots d'Anosov sur les variétés graphées au sens de Waldhausen, Ann. Inst. Fourier, Tome 46 (1996) no. 5, pp. 1451-1517 | Numdam | MR 1427133 | Zbl 0861.58028
[Br1] Essential laminations in Seifert-fibered spaces, Topology, Tome 32 (1993) no. 1, pp. 61-85 | MR 1204407 | Zbl 0791.57013
[Br2] Essential laminations in Seifert-fibered spaces: boundary behavior, Topology Appl., Tome 95 (1999) no. 1, pp. 47-62 | MR 1691931 | Zbl 0937.57016
[D] Sur les courbes définies par les équation différentielles à la surface du tore, J. de Math. (9), Tome 11 (1932), pp. 333-375 | JFM 58.1124.04
[EHN] Transverse foliations of Seifert bundles and self homeomorphism of the circle, Comment. Math. Helv., Tome 56 (1981), pp. 638-660 | MR 656217 | Zbl 0516.57015
[ET] Confoliations, Amer. Math. Soc., University Lecture Series 13 (1998) | Zbl 0893.53001
[F] Anosov flows in 3-manifolds, Ann. of Math. (2), Tome 139 (1994), pp. 79-115 | MR 1259365 | Zbl 0796.58039
[Gh1] Déformations de flots d'Anosov et de groupes fuchsiens, Ann. Inst. Fourier, Tome 42 (1992) no. 1-2, pp. 209-247 | Numdam | MR 1162561 | Zbl 0759.58036
[Gh2] Rigidité différentiable des groupes fuchsiens, I.H.É.S. Publ. Math., Tome 78 (1993), pp. 163-185 | Numdam | MR 1259430 | Zbl 0812.58066
[GO] Essential laminations in -manifolds, Ann. of Math. (2), Tome 130 (1989) no. 1, pp. 41-73 | MR 1005607 | Zbl 0685.57007
[H] All compact orientable three manifolds admit total foliations, Memoirs Amer. Math. Soc., Tome 233 (1980) | Zbl 0435.57005
[J] Lectures on three-manifold topology, CBMS, Amer. Math. Soc. (Regional Conference Series in Mathematics 43) (1980) | MR 565450 | Zbl 0433.57001
[L] Feuilletages des variétés de dimension qui sont des fibrés en cercles, Comment. Math. Helv., Tome 53 (1978) no. 4, pp. 572-594 | MR 511848 | Zbl 0393.57004
[Ma] Foliations of Seifert fibered space over , Foliations (Tokyo, 1983), North-Holland (Adv. Studies Pure Math.) Tome 5 (1985), pp. 325-339 | MR 877337 | Zbl 0645.57020
[Mi1] Anosov flows and non-Stein symplectic manifolds, Ann. Inst. Fourier, Tome 45 (1995) no. 5, pp. 1407-1421 | Numdam | MR 1370752 | Zbl 0834.53031
[Mi2] Foliations and contact structures on 3-manifolds, Foliations: geometry and dynamics (Warsaw, 2000), World Sci. Publishing (2002), pp. 75-125 | MR 1882766 | Zbl 1008.57003
[Mi3] Projectively Anosov flows and bi-contact structures on (Preprint in preparation)
[MR] Relations de conjugaison et de cobordisme entre certains feuilletages, I.H.É.S. Publ. Math., Tome 43 (1974), pp. 142-168 | Numdam | MR 358810 | Zbl 0356.57018
[Nd] Projectively Anosov flows with differentiable (un)stable foliations, Ann. Inst. Fourier, Tome 50 (2000) no. 5, pp. 1617-1647 | Numdam | MR 1800129 | Zbl 1023.37014
[NT] Regular projectively Anosov flows without compact leaves, Foliations: geometry and dynamics (Warsaw, 2000), World Sci. Publishing (2002), pp. 403-419 | MR 1882782 | Zbl 1002.37016
[Nv] Topology of foliations, Trudy Moskov. Mat. Ob., Tome 14 (1965), pp. 248-278 | MR 200938 | Zbl 0247.57006
[Nv] Topology of foliations, Amer. Math. Soc. (1967), pp. 286-304 | Zbl 0247.57006
[O] Seifert manifolds, Springer, Lecture Notes in Math., Tome 291 (1972) | MR 426001 | Zbl 0263.57001
[Sc] The geometries of -manifolds, Bull. London Math. Soc., Tome 15 (1983), pp. 401-487 | MR 705527 | Zbl 0561.57001
[Sch] A generalization of a Poincaré-Bendixon theorem to closed two dimensional manifolds, Amer. J. Math., Tome 85 (1963), pp. 453-458 | MR 155061 | Zbl 0116.06803
[Ta] Topology of foliations : an introduction. Transl. from the 1976 Japanese edition., Amer. Math. Soc., Translation of Mathematical Monographs, Tome 97 (1992) | MR 1151624 | Zbl 0742.57001
[Th] Foliations of 3-manifolds which are circle bundles (1972) (Ph. D. Thesis, UC Berkeley)
[Ts] Regular projectively Anosov flows on the Seifert fibered spaces (Preprint)