Dans cet article nous montrons que tout feuilletage conforme, transversalement analytique, de codimension supérieure ou égale à trois sur une variété compacte connexe est transversalement Möbius ou riemannien. Ce théorème peut être vu comme une généralisation, transversalement à un feuilletage, du théorème Ferrand-Obata.
In this article we prove that every conformal foliation, transversely analytic, of codimension at most three on a compact connected manifold is either transversely Möbius or Riemannian. This theorem can be seen as a generalisation of the Ferrand-Obata theorem transversely to a foliation.
@article{AIF_2004__54_2_453_0, author = {Tarquini, C\'edric}, title = {Feuilletages conformes}, journal = {Annales de l'Institut Fourier}, volume = {54}, year = {2004}, pages = {453-480}, doi = {10.5802/aif.2025}, zbl = {1064.53014}, language = {fr}, url = {http://dml.mathdoc.fr/item/AIF_2004__54_2_453_0} }
Tarquini, Cédric. Feuilletages conformes. Annales de l'Institut Fourier, Tome 54 (2004) pp. 453-480. doi : 10.5802/aif.2025. http://gdmltest.u-ga.fr/item/AIF_2004__54_2_453_0/
[1] Chapitres supplémentaires de la théorie des équations différentielles ordinaires, Moscou (1980) | MR 626685 | Zbl 0956.34502
[2] On transversaly flat conformal foliations with good measures II, Hiroshima Math. J, Tome 28 (1998), pp. 523-525 | MR 1657497 | Zbl 0932.53023
[3] On the dynamics of certain actions of free groups on closed real analytic manifolds, Commentarii Mathematici Helvetici, Tome 77 (2002), pp. 524-548 | MR 1933788 | Zbl 01837405
[4] On transversely holomorphic flows I, Inventiones Mathematicae, Tome 126 (1996) no. 2, pp. 265-279 | MR 1411132 | Zbl 0873.57021
[5] Transformations conformes et quasi conformes des variétés riemanniennes : application à la démonstration d'une conjecture de A. Lichnerowicz, C.R.Acad.Sci. Paris, Série A, Tome 269 (1969), pp. 583-586 | Zbl 0201.09701
[6] The action of conformal transformations on a Riemannian manifold, Mathematische Annalen, Tome 304 (1996), pp. 277-291 | MR 1371767 | Zbl 0866.53027
[7] Autour du théorème de Ferrand-Obata, Annals of Global Analysis and Geometry, Tome 21 (2002), pp. 51-62 | MR 1889249 | Zbl 1005.53011
[8] Riemannian Geometry, Springer-Verlag, Berlin-Heidelberg, Universitext (1987-1990) | MR 1083149 | Zbl 0636.53001
[9] Flots transversalement affines et tissus feuilletés, Mémoire de la Société Mathématiques de France (N.S), Tome 46 (1991), pp. 123-150 | Numdam | MR 1125840 | Zbl 0761.57016
[10] On transversaly holomorphic flows II, Inventiones Mathematicae, Tome 126 (1996), pp. 281-286 | MR 1411133 | Zbl 0873.57022
[11] Pseudo-groupes of locales isometries, Proceeding Vth Coll. in Diff. Geom, Tome 131 (1985), pp. 174-197 | Zbl 0656.58042
[12] Uniform lipschitz distortion, invariant measures and foliations, Geometric study of foliations (Tokyo, 1993), World Sci. Publishing, River Edge, NJ. (1994), pp. 313-326 | MR 1363732
[13] Transformation groups in differential geometry, Springer-Verlag, Berlin-Heidelberg-New York (1972) | MR 355886 | Zbl 0246.53031
[14] The conjectures on conformal transformations of Riemannian manifolds, J. Differential Geom, Tome 6 (1971), pp. 247-258 | MR 303464 | Zbl 0236.53042
[15] On the existence of slices for actions of non-compact Lie groups, Annals of Mathematics, Tome 73 (1961) no. 2, pp. 295-323 | MR 126506 | Zbl 0103.01802
[16] Foliations and pseudogroups, American journal of Mathematics, Tome 87 (1967), pp. 79-101 | MR 174061 | Zbl 0136.20903
[17] Une généralisation du théorème de Myers-Steenrod aux pseudogroupes d'isométries locales, Annales de l'institut Fourier, Tome 38 (1988) no. 2, pp. 185-200 | Numdam | MR 949015 | Zbl 0613.58041
[18] On the conformal and CR automorphism groups, Geometric and functional analysis, Tome 5 (1995) no. 2, pp. 464-481 | MR 1334876 | Zbl 0835.53015
[19] Continuation from a domain and the approximation of space quasiconformal mappings with small distortion coefficient, Soviet mathematics, Doklady, Tome 27 (1983) no. 3, pp. 777-780 | Zbl 0541.30007
[20] Lectures on -dimensional quasiconformal mappings, Springer-Verlag, Lecture Notes in Mathematics (1988) | MR 454009
[21] Conformal foliations, Kodai Math. Journal, Tome 2 (1979), pp. 26-37 | MR 531785 | Zbl 0402.57014
[22] Foliated -structures and Riemannian foliations, Manuscripta Mathematica, Tome 66 (1989), pp. 45-59 | MR 1023550 | Zbl 0686.57015